
Sobhani and Samadani ﻿J Egypt Natl Canc Inst           (2021) 33:34  
https://doi.org/10.1186/s43046-021-00093-1

REVIEW

Implications of photodynamic cancer 
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Abstract 

Background:  Tumor eradication is one of the most important challengeable categories in oncological studies. In this 
account, besides the molecular genetics methods including cell therapy, gene therapy, immunotherapy, and general 
cancer therapy procedures like surgery, radiotherapy, and chemotherapy, photodynamic adjuvant therapy is of great 
importance. Photodynamic therapy (PDT) as a relatively noninvasive therapeutic method utilizes the irradiation of an 
appropriate wavelength which is absorbed by a photosensitizing agent in the presence of oxygen.

Main body of the abstract:  In this procedure, a series of events lead to the direct death of malignant cells such as 
damage to the microvasculature and also the induction of a local inflammatory function. PDT has participated with 
other treatment modalities especially in the early stage of malignant tumors and has resulted in decreasing morbidity 
besides improving survival rate and quality of life. High spatial resolution of PDT has attracted considerable attention 
in the field of image-guided photodynamic therapy combined with chemotherapy of multidrug resistance cancers. 
Although PDT outcomes vary across the different tumor types, minimal natural tissue toxicity, minor systemic effects, 
significant reduction in long-term disease, lack of innate or acquired resistance mechanisms, and excellent cosmetic 
effects, as well as limb function, make it a valuable treatment option for combination therapies.

Short conclusion:  In this review article, we tried to discuss the potential of PDT in the treatment of some dermato-
logic and solid tumors, particularly all its important mechanisms.
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Highlights

1.	 The implication of PDT is approved clinically and is a 
noninvasive therapeutic method that can employ an 
elective cytotoxic function toward cancerous tissues.

2.	 The effectiveness of PDT in cutaneous malignancies 
as a promising treatment modality and in some cases 
like lung cancer has been proven.

3.	 Designing methods to overcome constraints such as 
photosensitivity, poor light penetration, low tumor 

selectivity, and systemic toxicity seems to be effective 
in PDT efficiency.

4.	 PDT leads to a sequence of photochemical and pho-
tobiologic activities that leads to irreversible photo 
damage to cancerous cells.

Background
Main text
Photochemical treatment of cancer, often called photody-
namic therapy (PDT), is a relatively noninvasive method 
compared with other common cancer therapy modalities 
in treatment of cancerous small tumors. Using PDT as 
an adjuvant treatment was recommended in literatures 
to overcome some obstacles of common monotherapies 
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such as surgery, chemotherapy, and radiation therapy 
[106, 131, 134]. In some researches, high spatial and tem-
poral resolution of PDT has been reported as a functional 
feature in image-guided PDT [59, 124, 127, 132]. This 
method is based on the reactions of a photosensitizer in 
the presence of oxygen molecules and appropriate wave-
length of light [8, 74, 105].

The performance of PDT requires some qualifica-
tions including (1) a photosensitizer (PS) with maximum 
tumor uptake, (2) sufficient elapsed time after injection 
to achieve most accumulation of the photosensitizer in 
the tumor, and also (3) irradiation of light with appropri-
ate wavelength to optical destruction of the tumor.

There are two oxidative mechanisms in optical destruc-
tion of tumor cells. Photosensitizer interacts with a bio-
molecule or oxygen, and free radical production occurs 
as a result of the transfer of electron or hydrogen. Singlet 
oxygen produces by energy transfer from triplet excita-
tion mode to triplet ground state of oxygen molecule.

Different types of biomolecules such as unsaturated 
fats, cholesterol, and alpha amino acids such as trypto-
phan 3 and metanil 6 react with singlet oxygen easily. 
These compounds are the main components of differ-
ent biological membranes. So, the membrane damage 
is an important process which causes the necrosis and 
destruction of blood vessels through PDT [14]. The pho-
tosensitizer usually is injected with aqueous buffer solu-
tion or liposome, and light source is often a laser with 
optical fibers to optimal light transfer to the therapeutic 
region.

Physics of photodynamic therapy
Several phenomena such as scattering, reflection, trans-
mission, and absorption may occur after tissue irra-
diation, which determine the type of effect and depth of 
penetration in tissue [91].

To perform a biological reaction, photons must first be 
adsorbed by a photosensitizer, and this is possible when 
the wavelength of light is the same as the absorption 
spectrum of the photosensitizer [78]. Intense absorption 
in the wavelength less than 600 nm by in vivo pigments 
(mainly hemoglobin) and less efficiency of singlet oxygen 
production in the wavelength more than 900 nm some-
times eliminate the clinical applications to the region of 
600–900 nm [78].

Mechanism of competitive reactions in photodynamic 
therapy
Following the absorption of a photon with appropri-
ate energy, the photosensitizer molecule is transferred 
from the ground state (S0) to excited state (S1) which may 
return to its primitive ground state along with fluores-
cence radiation or be transferred to triplet excited state 

as an inter-system crossing. The triplet state of photosen-
sitizer molecule in the tissue has a relatively long lifespan 
which can cause changes in surrounding molecules and 
initiate two competitive reactions called reaction types I 
and II (Fig. 1) [10, 24].

Reaction type I includes the transfer of electron or pro-
ton to oxygen and surrounding molecules to form ani-
onic or cationic radicals. These radicals can react with 
oxygen molecule to form the reactive oxygen species 
(ROS). Reaction type I often leads to the formation of 
superoxide ions by the transfer of one electron to an oxy-
gen molecule. These ions do not act as active ions in bio-
logical systems, but they can produce hydrogen peroxide 
(H2O2), which is easily absorbed from cell membranes. 
In high concentrations, H2O2 can react with super oxide 
molecules caused by the production of hydroxyl as an 
active radical which has the ability to ionize any mole-
cules with low activation energy.

In reaction type II, the photosensitizer molecule, by 
transitioning from the triplet state to ground state and 
transfer of energy to oxygen molecule, converts it to 
excited singlet oxygen. The singlet oxygen as a charge-
less molecule can spread to the cytoplasm and biological 
membranes. Approximately all of photosensitizers have 
high quantum yield in this reaction.

Photosensitizers typically produce one singlet oxygen 
per every two absorbed photons. The available evidences 
show that the singlet oxygen is the main intermediary of 
biological damage in PDT. Some studies have shown that 
the tissue necrosis needs to be 1018–1019 singlet oxygen 
per cm3 [122].

Reactions types I and II as direct effects of PDT occur 
in parallel depending on the type of photosensitizer and 
the oxygen concentration. It should be noted that for 
more applied photosensitizers, reaction type II is a domi-
nant process [91].

PDT assists in tumor destruction via apoptosis and 
necrosis in direct tumor cell killing, hypoxia and starva-
tion of tumor in vasculature damage and T cells, antibod-
ies, and long-term memory immunity in stimulation of 
the immune system [69, 97].

Photosensitizers
There is no history of photodynamic therapy that can 
be said without regard to hematoporphyrin. For the first 
time, Schere produced the impure hematoporphyrin, 
and its fluorescence spectrum was interpreted by Thudi-
chum in 1867 [11, 50]. After the identification of impurity 
of hematoporphyrin, researches began to find products 
with higher purity such as tetraphenylporphine sulfonate 
(TPPS), phthalocyanine (Pc), aluminum phthalocyanine 
sulfonates (AlPcS), meta hydroxyl-phenyl (mTHPC), and 
protoporphyrin IX.
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The first attempts to apply PDT in tumor treatment 
and other skin diseases such as lupus were made by 
Tappeiner’s group in 1903–1905. They intratumorally 
injected some of useful dyes such as eosin, fluorescein, 
and sodium dichloroanthracene disulfonate, and sat-
isfactory results were reported. Then, much research 
have been done on the sensitivity of materials to light 
which showed that the presence of oxygen is necessary 
for the occurrence of a photodynamic effect [63].

Primary sensitizers had three main drawbacks: skin 
sensitization, low selectivity, and poor absorption in 
infrared region. So, deep tumor treatment was difficult 
[14]. A suitable photosensitizer should have the follow-
ing characteristics:

A.	Photophysical property: high absorption in the wave-
lengths of 630–980 nm to maximum penetration in 
tissue and minimum absorption in the range of 400–
600 nm which causes photosensitivity by sunlight 
(Table 1).

B.	 Photochemical property: high singlet oxygen produc-
tion to maximum PDT efficiency. Photosensitizer 

also must be fluorescent for biological distribution 
monitoring via spectroscopy.

C.	Chemical property: high stability, cheap and conveni-
ent synthesis, solubility in water, and participation 
in the body kinetic cycle without the need to release 
intermediary such as liposomes and emulsions.

D.	Biological property: low toxicity, rapid clearance 
from vascular system, selective absorption in tissue, 

Fig. 1  Reaction types I and type II of photosensitizer application in destroying the malignant tissues with the involvement of oxygen species (ROS) 
in photodynamic therapy

Table 1  Penetration depth of different wavelengths of light 
applied in PDT

Wavelength (nm) Penetration depth (cm) Reference

NIR region < 10 [25]

662–780 0.4–1 [7]

597–622 0.3–0.4 [7]

577–597 0.3 [7]

492–577 0.2 [7]

455–492 0.1 [7]

390–455 0.1 [7]
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and penetration into micron-size cellular targets [1, 
38, 45, 50, 52, 77, 80, 83, 122].

Some photosensitizers such as 5-aminolevulinic acid 
(Levulan), methyl aminolevulinate (Metvix), hexyl 
5-aminolevulinate (Hexvix), and porfimer sodium (Pho-
tofrin) were approved by the FDA for clinical application 
of PDT [36].

A large number of new photosensitizers are synthe-
sized via changes in structure of various compounds such 
as chlorines, bacteriochlorines, phthalocyanines, texar-
phions, and porphyrins.

Deep tumors treatment by PDT
Despite the advantages of photodynamic therapy, this 
method faces obstacles in the treatment of deep tumors 
using short wavelengths of light. Light with a range of 
visible and ultraviolet energy due to autofluorescence and 
scattering by biological systems cannot penetrate into 
deep tissues and limits treatment to tumors within a few 
millimeters of the tissue surface [5, 23, 56, 60, 116, 119].

The penetration depth increases as the wavelength of 
the incoming light increases and refers to the area that 
receives 37% of the incoming light. For example, the pen-
etration depth of light with a wavelength of 693 nm in 
bladder tissue is approximately 40% greater than the pen-
etration depth of light with a wavelength of 633 nm [101]. 
Meanwhile, the use of near-infrared (NIR) wavelengths 
in the biological windows I (650–950 nm) and II (1000–
1350 nm) makes it possible to treat tumors located at 
greater depths due to the reduction in autofluorescence 
and tissue dispersion in this area. So, there is a need for 
photosensitizers with absorption in this range of energy.

While the absorption wavelengths of most of photo-
sensitizers are in the visible and ultraviolet regions, the 
amazing properties of some sensitizers and nanoparticles 
promise to use NIR light in the treatment of deep tumors.

NIR photosensitizers
Many advances in therapies have further limited barri-
ers of NIR sensitizers such as low water solubility, low 
quantum yield, low stability in biological environments, 
low light detection sensitivity, and optical stability [60]. 
For the first time in Canada, the use of Photofrin with 
an absorption wavelength of 630 nm in the treatment of 
bladder tumors was an important event in photodynamic 
therapy.

Cyanine, squaraine derivatives, and BODIPY 
(borondipyrromethane) are the most important NIR 
adsorbent sensitizers used in clinical imaging trials. 
Porphyrins such as 3- (1′-butyloxy) ethyl-3-deacetyl-
bacter-iopurpurin-18-N-butylimide methyl ester with 
significant absorption in the tumor and low optical 

toxicity in the skin was proposed as a functional agent 
in imaging and photodynamic therapy [87, 130]. 
Bromo-substituted BODIPY with high singlet oxygen 
quantum yield is suitable for the photodynamic treat-
ment of deep-seated tumors [126]. Because of singlet 
oxygen production by porphyrin and phthalocyanine 
derivatives, meso-tetraarylporphyrins, core modi-
fied porphyrin dendrimers, and bacteriochlorines are 
recommended candidates for NIR-triggered photo-
dynamic therapy [60]. One of the obstacles of PDT 
performance of these photosensitizers is the fluores-
cence quenching due to their aggregation in biological 
environments. Although some PSs with aggregation-
induced emission (AIE) are introduced to overcome 
this limitation, their poor molar extinction coefficient 
and photobleaching feature made researchers inter-
ested in the application of nanoparticles in NIR-PDT 
[20, 41, 117, 120].

Some nanostructures based on gold, palladium, car-
bon, copper selenide, tungsten oxide, etc., are suggested 
in literatures as functional theranostic particles in NIR-
PDT and fluorescence imaging [56, 115]. Among them, 
metallic gold nanostructures have been noted for their 
non-toxic and desirable optic nature (tunable local-
ized surface plasmon resonances (LSPR)). To this end 
among the several gold nanoparticle morphologies, 
Au nano-echinus structures with high extinction coef-
ficient of ∼1012 M− 1 cm− 1 in the NIR region seem to 
exhibit excellent PDT efficiency in both biological win-
dows I and II [104, 114].

Biological targets in photodynamic therapy
The type of photosensitizer and other parameters such 
as irradiation rate, time interval, and total dose of treat-
ment are tunable for the selection of biological targets. 
Unlike radiotherapy, the main purpose of PDT is not to 
damage DNA, but instead of the prevention of cell pro-
liferation, somatic death occurs [81]. In photodynamic 
therapy of some tumors such as prostate, photosensi-
tizers also can act as tumor oxygen eliminators via vas-
culature targeting.

Tissue responses in PDT are very rapid and visible, 
even before the treatment is completed.

Photosensitizers are localized in the mitochondria, 
cytosol, cytosolic membranes, Golgi apparatus, plasma 
membrane, endoplasmic reticulum, mitochondria, 
lysosome, and endosome, and more selective tumor 
uptake is related to the differences in the physiology of 
normal and neoplastic tissues [62]. Tumors have more 
interior volume, permeable vascular system, lipopro-
tein receptors, and less extracellular pH and lymphatic 
drainage than normal tissues [16, 129].
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Cell death pathways in photodynamic therapy
During PDT, oxidative stress in endoplasmic reticulum 
and photo oxidative cell damage cause the two modes of 
cell death, necrosis and apoptosis (Fig. 2).

After the release of extracellular proteins outside the 
cell, the activation of immune cells, migration to the site 
of cellular damage, and phagocytosis of damaged cells are 
the next events leading to antigen presentation and T cell 
activation [9].

Necrosis and apoptosis are determined by the proper-
ties of photosensitizer, cell line, irradiance wavelength, 
power density of radiation, and the oxygen concentration 
[19]. Necrosis is occurred following the cytoplasm swell-
ing, release of intracellular contents, and inflammation. 
In apoptosis cell shrinkage, plasma membrane blebbing 
and nuclear fragmentation caused cell death [58].

Generally, photosensitizers which localized in the 
mitochondria induce apoptosis, and those in the lyso-
some elicit the apoptosis or necrosis response. In plasma 

membrane apoptosis, necrosis and rescue responses 
are involved. Rescue responses are accompanied with 
changes of genes and expression of protein [71].

According to the reports of literatures, in general, low-
dose PDT leads to apoptosis while high dose PDT is fol-
lowed by more necrosis [19].

Cellular signaling mechanism
Proteins which are the most important factors in cell 
membrane signaling function are divided into transmem-
brane proteins (TM) and peripheral proteins. TM pro-
teins with the ability to cross the membrane are included 
to receptors and transporters of the membrane. Ion 
channels are one of the membrane transporter catego-
ries with the role of neurotransmission and responsibility 
of cell signal transduction. Single-pass transmembrane 
receptors (SPTMRs) and G-protein-coupled receptors 
(GPCRs) also transmit the signals from the outside to the 
inside of the cells.

Fig. 2  Mechanisms of necrosis and apoptosis induced by PDT
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Membrane-binding domains (MBDs) such as homol-
ogy-1(C1) and homology-2 (C2), protein kinase C (PKC), 
EEA1 (FYVE), and pleckstrin homology (PH) have the 
essential role in recruiting the peripheral proteins to the 
membrane during the membrane signaling process. Lipid 
anchored proteins, transmembrane receptors, and lipid-
binding proteins are a few samples of proteins associated 
in signaling events [21].

After PDT, increasing the free calcium level within 
the cells occurs via Ca2+ entrance through ion channels, 
Ca2+ secretion in the endoplasmic reticulum (ER) and 
mitochondria, and ion exchange mechanisms. It can be 
followed by cell death or in certain conditions by sur-
vival [19].

Apoptosis induced after PDT, by the mitochondrial 
localized photosensitizers such as benzoporphyrin 
derivative monoacid ring and silicone phthalocyanine Pc 
4, is following some signaling pathways. After illumina-
tion, cytochrome c releases into the cytosol, and because 
of the onset of permeability of the mitochondria and 
releasing of the Ca2+, rapid drop in the mitochondrial 
membrane potential is observed upon PDT. Caspase 3, 

procaspase 3, apoptosis-activating factor-1 (APAF-1), 
caspase 9, and pro-caspase 9 are involved in the cleav-
age of DNA fragmentation factor (DFF) and poly (ADP-
ribose) polymerase (PARP) enzyme (Fig. 3).

Some of signaling pathways belong to plasma mem-
brane level. Phospholipase A2 (PLA2) and phospholipase 
C (PLC) enzymes are activated by PDT and participate in 
signal transduction. Releasing calcium from the internal 
stores also activate PLA2. In PDT of some cells such as 
T24 with hematoporphyrin derivatives, an increase in 
intracellular calcium leads to PLA2 activation and subse-
quently an increase in cAMP and prostaglandin E (PGE) 
with the important role in rescue response.

Photodynamic therapy of solid tumors
The efficacy of PDT in treatment of different solid tumors 
was investigated in several studies. In terms of clini-
cal effectiveness, method standardization, result repro-
ducibility, and publication number, there is a specific 
and degreed treatment mythology in skin, esophageal, 
lung, and head and neck cancers. Cholangiocarcinoma, 

Fig. 3  Cellular signaling pathways based on photosensitizer (PS) localization and apoptosis induction upon PDT
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mesothelioma, brain tumors, and prostate and bladder 
cancers are in the second level, and gynecology, breast, 
pancreas, and intraperitoneal cancers are characterized 
in the third level.

Surgery is the preferred modality with no recurrence in 
treatment of patients with skin cancers except in multi-
ple lesions or specific location tumors which are assigned 
to PDT [69]. Furthermore, in patients with immune sys-
tem defects or Gorlin syndrome, PDT is more recom-
mended than surgery. In fact, the first experiments using 
PDT were against skin tumors. It was because of the 
ease of use and the possibility of monitoring the results 
and treatment progress. 5-Aminolevulinic acid or ALA 
(Levulan), methyl aminolevulinate (Metvixia) (MAL), 
and aminolevulinic acid hydrochloride (Ameluz) are 
the common used photosensitizers for PDT of actinic 
keratosis. Vegter et  al. have reported that ALA-PDT 
was the most effective method in photodynamic therapy 
of mild to moderate actinic keratosis of face and scalp 
[113]. Desired response to treatment with this method 
was observed in 75–89% of patients [69]. A recent ran-
domized trial comparing four frequently used methods 
in the treatment of actinic keratosis reports patients who 
were treated with fluorouracil had lower disease recur-
rence than those who received imiquimod, MAL-PDT, or 
ingenol mebutate [39].

5-Aminolevulinic acid or ALA (Levulan) and methyl 
aminolevulinate (Metvixia) are used in squamous cell 
carcinoma (SCC) PDT and have more clearance rate than 
cryotherapy and 5-fluoracil (5-FU) [129].

Jansen et al. in a 5-year randomized control trial found 
more treatment efficacy of basal cell carcinoma (BCC) in 
5% imiquimod cream compared to both MAL-PDT and 
5-FU [40]. In other research, BF-200 ALA-PDT of BCC 
was highly effective compared to MAL-PDT [73].

For the first time in 1983, PDT was used in the treat-
ment of esophagus cancer. The role of PDT in dysphagia 
relief and improvement of quality of life is investigated 
in literatures [33, 61, 64, 68]. In Minamide et al.’s study, 
talaporfin sodium-PDT divulged better outcomes than 
porfimer sodium-PDT for local failure after chemoradio-
therapy or radiotherapy in esophageal cancer [67].

As in 80–85% of patients with lung cancer, the 
advanced stage of disease is diagnosed at the refer-
ral time, the surgery loses its justification. Neoadju-
vant-PDT along with radiotherapy and chemotherapy 
is an option to improve quality of life in patients [69]. 
Chemo-photodynamic therapy was suggested by Zhang 
and his coworkers in treating the primary lung cancer 
[28, 133]. Shafirstein et  al. reviewed the PDT of non-
small cell lung cancer (NSCLC). They summarized 
locally and peripheral tumors, pleural disease and mar-
gin control in palliative indications and early stage, and 

superficial and centrally located endobronchial NSCLC 
tumors in definitive cases [102]. The pleural membrane 
of the lung is affected by malignant pleural mesotheli-
oma tumor. In recent years, local control improvement 
and increasing survival in cooperating PDT and other 
modalities such as proton therapy suggest encouraging 
outcomes [69, 96, 103].

In head and neck cancers in addition to surgery, radio-
therapy, and chemotherapy, PDT is a good candidate in 
early-stage diseases, neoadjuvant, intraoperative, and 
palliative therapy, or in cases of recurrence after treat-
ment [69]. For example, the most important modality in 
treatment of early-stage oral cavity cancer is surgery, and 
PDT is an adjuvant treatment for involved margins [66]. 
Photodynamic therapy with Photofrin was concluded by 
Hosokawa et al. as useful for treating head and neck car-
cinoma [35].

Despite insufficient access to photosensitizers with 
the ability to accumulate in brain tumors as well as 
light source with appropriate wavelength matched with 
absorption wavelength of PS, the use of PDT in elimi-
nating the tumor residues and treatment of recurrence 
cases has been proposed [69]. Intratumoral injection of 
PSs was suggested by Noske et al. to overcome the blood-
brain barrier in PDT of brain tumors, and pre-resection 
of tumor has an important role to maximize treatment 
outcome [42, 76].

In single-arm clinical trials, the result of a meta-anal-
ysis study confirms that PDT in patients with prostate 
cancer has short interval between PS administration 
and illumination, no skin photosensitization, and insig-
nificant impact on erectile and urinary functions [69, 
118]. Vascular targeted photodynamic therapy (VTP) 
was reported as a promising approach in the treatment 
of low-risk prostate cancer which is associated with 
increased quality of life [47].

Surgery in early-stage cholangiocarcinoma showed a 
prolonged survival time in 20–30% patients, and accom-
panying PDT in the treatment of extrahepatic biliary 
ducts tumors and nonresectable cholangiocarcinoma 
leads to more quality of life [65, 85]. Combination of 
Foscan-PDT with stenting for cholangiocarcinoma 
reduced the side effects in Kniebühler et al.’s study [48]. 
The increase in survival created by chemo-photodynamic 
prompted Gonzalez-Carmona et  al. to recommend it in 
treatment of advanced cholangiocarcinoma [31].

Since the 1980s, the use of PDT in bladder cancer 
was introduced in carcinoma in  situ (CIS) and superfi-
cial transitional cell cancer (TCC). Nseyo et al., in a ret-
rospective study, assessed PDT as an effective and safe 
treatment in 58 patients with resistant TCC and CIS [69, 
79]. PDT also represented a less invasive and safe treat-
ment for patients with superficial bladder cancer [13].
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High-intensity focused ultrasound (HIFU) and radi-
ofrequency ablation (RFA) are mentioned as two com-
petitors of PDT of breast cancer by Banerjee et al. HIFU 
possesses the higher ratio of CD4+ to CD8+ T cell and 
maybe lower sustained adoptive immune response 
compare to PDT [9]. In recent years, PDT has remained 
as an area of interest in palliative treatments and limi-
tation of drug resistance [7]. In this way, outcomes of 
PDT effectiveness on different tumors are provided in 
Table 2.

Advantages of photodynamic therapy
PDT is cheaper than common radiotherapy and sur-
gery and reduces the post-treatment care time from a 
few weeks to a few hours. In this modality, irradiation 
is limited to the treatment region, so there is no photo-
sensitizer activation in obscene of light and there is no 
cell destruction.

As a noninvasive method, it is a repeatable treatment 
in the same place. Induction of systemic anti-tumor 
immunity of PDT is used in the design of antitumor 
vaccines [30].

Due to the different amount of photosensitizer uptake 
in normal and neoplastic tissue, fluorescence emission 
of photosensitizer can be recorded as a noninvasive 
tumor marker in point monitoring and fluorescence-
guided surgery [34].

PDT is generally fitted to superficial lesions; then, it 
is less efficient in the treatment of large and metastatic 
tumors. Anyway, with the help of reasonable high-
power LEDs and upon excitation by the light source 
with long wavelength (NIR), the penetration depth 
increases [104].

PDT side effects
Pain, erythema, edema, and pustular skin disorder are 
the most common side effects of PDT along with rare 
side effects such as urticaria, contact dermatitis, or ero-
sive pustular dermatosis of the scalp (EPDS). In some 
patients with skin cancer susceptibility, for example in 
cases with immunosuppression, non-melanoma skin 
cancer history, or photodamaged skin, the occurrence 
of basal cell carcinoma (BCC), squamous cell carcinoma 
(SCC), and melanoma were reported after PDT as con-
sequences of immunosuppression, mutagenesis, and iso-
topic response [15].

Lehmann summarized the side effects of PDT as fol-
lows: pain 92%, erythema/edema 89%, flaking/itching 
80%, pustulation 6%, erosion 1.2%, hyper-hypopigmen-
tation 1.0%, and infections (bacterial/viral) 0.3% [86]. 
To minimize the cutaneous photosensitivity, rapid 

accumulation in the target tissue and high clearance rate 
of photosensitizer is desirable (Table 3) [45].

Conclusions
The clinical use of PDT in therapy dates back to about 
40 years ago, but the progress of science in this method 
has been ahead of the progress of its clinical applica-
tions. The effectiveness of PDT in cutaneous malignan-
cies as a promising treatment modality and in some 
cases such as lung cancer as an adjuvant and palliative 
method has been proven in lots of literatures.

Although designing methods to overcome con-
straints such as photosensitivity, poor light pen-
etration, low tumor selectivity, and systemic toxicity 
seems to be effective in PDT efficiency, more rand-
omized clinical trials are needed to more expanded 
applications.

Mechanisms of subcellular and tumor localization of 
photosensitizing agents, as well as of molecular, cel-
lular, and tumor responses associated with photody-
namic therapy in conjunction with the technical issues 
regarding light dosimetry, are really of great impor-
tance. Importantly, besides the PDT in cancer treat-
ment, we strongly recommend the role of miRNAs 
[8] and also stem cell therapy particularly CAR-T cell 
therapy [6, 98].

In general, it can be said that PDT can have a promis-
ing future as a cancer treatment for early diseases or as 
a synergistic therapy in multimodal oncology.
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