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Abstract 

Background:  Stomach adenocarcinoma (STAD) dominates 80–90% of gastric cancer (GC). Over the years, it has 
been realized that the identification of the genes responsible for gastric carcinogenesis is essential to understand the 
biomarker discovery.

Methods:  This study aims to identify candidate genes for biomarker discovery in STAD. RNA-Seq was performed on 
three paired tumor-normal and one unpaired tumor samples from four GC patients and investigated for differentially 
expressed genes (DEGs) using DESeq2. Gene set enrichment analysis were performed. The DEGs were compared 
with two STAD microarray datasets available on Gene Expression Omnibus (GEO) database. Survival study (OS) were 
performed using KM-Plotter on the common genes between all the datasets.

Results:  Totally, 148 DEGs were identified, wherein 55 genes were upregulated and 93 genes were downregulated 
with |log2foldchange| > 1 and Benjamini-Hochberg (BH) Adjusted P value < 0.01. Cell adhesion molecule (CAM) Path-
way was found to be the most significant among the upregulated genes. Gastric acid secretion and mineral absorp-
tion pathways were the most significant pathways among the downregulated genes. Comparison with two GEO 
datasets followed by OS analysis revealed two upregulating genes, APOC1 and SALL4 with prognostic significance.

Conclusion:  Upregulation of APOC1 is associated with marginal overall survival (OS) and SALL4 over-expression was 
associated with the poor OS using KM-Plotter during 5 years data period. Our study suggests that SALL4 could be a 
promising biomarker candidate in STAD.
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Background
Gastric cancer symptoms are misunderstood often with 
the other stomach complications, which leads to diagno-
sis at an advanced stage and poor treatment due to can-
cer heterogeneity [1]. STAD dominates the major type 
of GC; the second deadliest cancer type worldwide and 

associated with a poor survival rate [2]. Eighty to 90% of 
GC cases belong to STAD are primarily associated with 
intestinal metaplasia; however, surgical resection is still a 
promising curative treatment [3, 4]. However, the identi-
fication of biomarkers to predict the outcome of the par-
ticular treatment is another challenging task and equally 
crucial.

Biomarker discovery enables the understanding of the 
disease diagnosis, prognostic events, and selection of the 
treatment strategies. CEA, CA19-9, and CA72-4 belong 
to carcinoembryonic antigens and are currently used 
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biomarkers in clinical setup despite having low specificity 
for evaluating diagnosis and the prognosis of GC [5, 6].

Recent advances in transcriptome array and whole 
transcriptome sequencing have generated a tremendous 
amount of data and are being deposited in the publicly 
available databases. Experimental data could be com-
pared with such publicly available data to increases the 
authenticity of the study [7]. Comparison of tumor gene 
expression profiles with the normal tissues is crucial for 
investigating differentially expressed genes (DEGs), dif-
ferent pathways which enable researchers to understand 
mechanisms of cancer development, progression, and 
response to the targeted therapies [8].

Identification of such biomarkers is crucially impor-
tant to monitor the patient health after treatment and the 
after-effects during the recovery period could be avoided. 
This study aims to identify the potential pathways in GC 
and the genes involved in STAD using transcriptomics 
approach.

Methods
Sample collection and total RNA isolation
Paired tumor-normal samples from four GC patients 
were obtained after surgery and the samples were imme-
diately transferred into RNAlater (Thermo Fischer Sci-
entific, USA) solution and stored at – 80 °C temperature. 
The participants did not have previous GC history. High 
quality total RNA was extracted from adjacent normal 
and Tumor Tissue samples using the PureLink RNA mini 
kit (Ambion, Inc.) as per the manufacture’s protocol. Agi-
lent RNA 6000 Nanochips in 2100 Bioanalyzer (Agilent, 
Inc) was used to check the quality of isolated total RNA 
and quantitation was done by Qubit using the Quant-iT 
RNA assay kit broad range and NanoDrop spectropho-
tometer (Thermo Ficher Scientific, USA). A summary 
of the clinical data of the patients is given in the Supple-
mentary Table 1.

Library preparation, sequencing, and data processing
The sequencing library was prepared using Illumina 
TruSeq Stranded Total RNA Library preparation kit (Illu-
mina Inc., USA) from the samples bearing RNA Integ-
rity Number (RIN) ≥ 6. Three paired tumor-normal and 
one unpaired tumor sample from four GC patients pos-
sessed RIN ≥ 6 (Supplementary Table  2) were further 
processed for RNA-Seq. Briefly, 1 μg of total RNA was 
taken for library preparation and rRNAs were removed 
before fragmentation and adapter ligation. cDNA library 
containing first and second-strand cDNA was synthe-
sized from rRNA-depleted fragmented total RNA, both 
ends of cDNA were repaired and adapters were ligated, 
and final libraries were enriched using limited cycle PCR. 
The yield of cDNA libraries was quantified using Qubit 

dsDNA HS assay kit (Invitrogen, USA), size distribution 
and quality of the cDNA libraries were assessed using a 
High Sensitivity chip in Bioanalyzer (Agilent Technolo-
gies, USA), respectively. Quantitative Real-Time PCR was 
used to quantify the final library. The clusters were gener-
ated on a cBot cluster generation system (Illumina) and 
paired-end 2 × 100 bp sequencing was performed in Illu-
mina HiSeq-2500 (Illumina Inc., USA).

Data processing and analysis
The raw data were checked with FASTQC tool [9]. The 
low-quality bases and adapters were removed using 
Trimmomatic v0.38 [10]. The average number of reads 
after trimming was reduced to 16 million reads from 18 
million reads (Supplementary Table  3). The raw reads 
were aligned to the human reference genome (GRCh38) 
using STAR aligner [11]. The generated BAM files were 
sorted by coordinates using Samtools [12]. The transcript 
counts were estimated using featureCount tool [13] 
with GRCh38 version-based gene annotations. The low 
expressed genes which did not have more than 15 counts 
per million (CPM) reads in all the samples were removed 
from subsequent analysis. The null hypothesis for the 
experiment was that there was no difference in expres-
sion between the paired normal samples (log2foldchange 
is equal to Zero). DESeq2 [14], a R/Bioconductor [15] 
package which uses the Wald test for hypothesis test-
ing was used to produce the gene list after ranked by P 
value and Adjusted P value for multiple testing using the 
Benjamini-Hochberg method. The log-transformed nor-
malized counts were used to calculate the principal com-
ponent analysis (PCA) to assess normalized expression 
pattern before differential expression test between tumor 
and adjacent normal tissues. |Log2foldchange| > 1 (rejec-
tion of null hypothesis) and adjusted P value < 0.01 were 
set as the criteria to get the significantly upregulated and 
downregulated genes. “ggplot2” packages were used to 
generate the volcano plot.

Functional enrichment analysis
EnrichR (https://​maaya​nlab.​cloud/​Enric​hr/) was used to 
study the Gene Ontology (GO) for the Biological process 
(BP), Molecular function (MF) and Cellular component 
(CP). Similarly, KEGG Pathway and Disease-Gene Asso-
ciation (DisGeNET) analysis using EnrichR. EnrichR uses 
Fisher-exact test to calculate the P value and adjusted P 
value using Benjamini-Hochberg method for correction 
for multiple hypotheses testing [16–18]. The Adjusted P 
value < 0.05 was considered statistically significant for 
both the GO analysis and the pathway enrichment analy-
sis to identify the significant GO terms and pathways.

https://maayanlab.cloud/Enrichr/
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GEO2R analysis and comparison with RNA‑Seq data
For comparative study with gene expression data from 
other STAD patients, microarray datasets GSE19826 
and GSE79973 from Gene Expression Omnibus (GEO) 
were used (Table  1). The differential gene expression 
was analyzed using GEO2R (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/​geo2r/). We have identified the DEGs from the 
two datasets using the criteria of |log2folchange| > 1 to 
get upregulated and downregulated genes and adjusted 
P value < 0.01 as statistically significant. The Venn Dia-
gram tool (http://​bioin​forma​tics.​psb.​ugent.​be/​webto​
ols/​Venn/) was used to find out the common genes 
from the DEGs identified from the RNA-Seq experi-
ment and two GEO Datasets.

Overall Survival (OS) analysis
The “Kaplan-Meier plotter” (https://​kmplot.​com) tool 
was used to analyze the overall survival of the key over-
lapping genes. KM-Plotter utilizes Cox proportional 
hazards regression analysis and calculates the log-rank 
P value [21]. KM-Plotter uses background databases 
derived from manually curated clinical data as well 
as the gene expression data from GEO datasets. The 
analysis was restricted to 60 months OS at cancer stage 
III. Log-rank P value < 0.05 was set to be statistically 
significant.

Result
Identification of the DEGs from RNA‑Seq data
Principal component analysis (PCA) was performed 
to understand the variation in the normalized expres-
sion pattern between the tumor and the adjacent nor-
mal samples. PC1 and PC2 were observed to be 52% 
and 31% variance, respectively (Supplementary Fig-
ure 1). Total 148 genes showed highly significant differ-
ential expression with adjusted P value < 0.01 wherein 
55 genes were upregulated (log2foldchange > 1) and 
93 genes were downregulated (log2foldchange < − 1) 
(Fig. 1). The upregulated and downregulated genes with 
adjusted P value and log2foldchange are provided in 
Supplementary Table 4A and B.

Functional enrichment of the DEGs
The Gene Set Enrichment Analysis for upregulated and 
downregulated genes was performed for Gene Ontology 
terms for biological process, molecular function, and cel-
lular component (Table 2). Pathway analysis of the upreg-
ulated gene set identified the Cell Adhesion molecule 
(CAM) pathway as the most significant pathway with 
adjusted P value of 0.004517. Among the downregulated 
genes, the Gastric acid secretion pathway and Mineral 
absorption pathway were found to be the most significant 
pathways with adjusted P values 0.001302 and 0.002315 
(Table 3).

In the Disease-Gene Association analysis, the upregu-
lated genes were found to be associated with stomach 
neoplasm (adjusted P value: 0.0001783), malignant neo-
plasm of stomach (adjusted P value: 0.002834), and tumor 
progression (adjusted P value: 0.004874). On the other 
hand, hypokelmia, characterized by less K+ absorptions 
are found to be significant (adjusted P value: 0.04754) 
among the downregulated genes (Table 4).

Identification of DEGs from GEO datasets and comparation 
with RNA‑Seq data
In GSE19826, we found 145 upregulated and 103 down-
regulated genes. Similarly, in GSE79973, we found 210 
genes as upregulated and 343 genes as downregulated. 
The DEGs obtained from two datasets from the GEO 
database using GEO2R as well as the DEGs from our 
study were used to find out the most common genes 
among the upregulated and downregulated genes. 
APOC1, SALL4 were the commonly upregulated genes 
and PSAPL1, CLIC6, TRIM50 were the commonly down-
regulated genes in all the three datasets. Comparison of 
the datasets for upregulated and downregulated genes 
is represented as Venn diagram (Fig.  2A, B). The genes 
common among the three datasets are also provided in 
detail in the Supplementary Table 5A-B.

Survival probability
The KM plotter was used to investigate the genes for 
overall survival and the final analysis was run based on 
305 patients’ data for the APOC1 gene and 197 patients’ 
data for SALL4, PSAPL1, CLIC6, and TRIM50 genes. It 
was found that high expression of APOC1 is associated 
with marginal better OS with log-rank P value 0.03 and 
hazard ratio 0.70. SALL4 upregulation is significantly 
associated with very poor OS with log-rank P value 
0.000021 and hazard ratio 3.19 (Fig. 3A, B). The median 
OS associated with APOC1 was found 35.5 months 
in the high expression cohort and 27.4 months in the 
low expression cohort. The median OS associated with 
SALL4 was 44.07 months in the low expression cohort 
and 13.04 month in the high expression cohort. The OS 

Table 1  GEO Datasets selected for comparison with the RNA 
sequencing data from GC patients from Mizoram

Dataset ID Tumor Adjacent 
Normal

Total 
Sample

Platform Citation

GSE19826 12 15 27 GPL570  [19]

GSE79973 10 10 20 GPL570 [20]

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://kmplot.com
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Fig. 1  Volcano plot showing the significant different ially expressed genes (DEGs). The adjusted P value less than 0.01 was set as statistically 
significant. log2foldchange > 1 is set to be upregulated and log2folchange < − 1 is set to be downregulated

Table 2  Genes enriched in the Gene Ontology (GO) terms

The Adjusted P-Value are mentioned in italics below the GO terms

BP Biological Process, MF Molecular Function, CP Cellular Component

--: No GO terms enriched with Adjusted P-Value <0.05

Relative Gene Expression BP MF CP

Upregulated Positive regulation of bone resorption (GO:0045780) 
0.001907

-- --

Cellular component maintenance (GO:0043954) 0.001907

Downregulated Sodium ion homeostasis (GO:0055078) 0.003497 P-type potassium transmembrane transporter activity 
(GO:0008556) 0.034526

--

Bicarbonate transport (GO:0015701) 0.006706 Ligand-gated cation channel activity (GO:0099094) 
0.034526

Inorganic cation import across plasma membrane 
(GO:0098659) 0.006706

P-type proton-exporting transporter activity 
(GO:0008553) 0.034526

Potassium ion import across plasma membrane 
(GO:1990573) 0.007014

Ligand-gated sodium channel activity (GO:0015280) 
0.034526

Metal ion homeostasis (GO:0055065) 0.007014 Channel activity (GO:0015267) 0.037584
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associated with PSAPL1, CLIC6, and TRIM50 genes 
were found to be insignificant with log-rank P values of 
0.061, 0.064, and 0.25, respectively (Fig. 3C–E).

Discussion
In gastric adenocarcinoma, we have analyzed patients’ 
tumor samples along with adjacent normal collected 
after radical resection and 148 highly significant 

(adjusted P value < 0.01) differentially expressed genes 
were identified using RNA-Seq data. We have ana-
lyzed for functional enrichment of the upregulated and 
the downregulated genes to understand the underlying 
pathways and GO for the underlying biological func-
tions. The resulting gene set from the RNA-Seq experi-
ment was compared with the gene expression data of 
two microarray datasets: GSE19826 (12 tumor and 15 

Table 3  Genes enriched in the KEGG pathway

Relative Gene Expression Pathways Genes Adjusted P-Value

Upregulated Cell Adhesion Molecule CLDN7, SELL, CLDN4, HLA-DOA, CLDN1 0.004517

Downregulated Gastric Acid Secretion ATP4A, ATP4B, KCNE2, KCNJ16, SLC26A7 0.001302

Mineral absorption pathway MT1A, TRPV6, MT1M, MT1G 0.002315

Table 4  Genes enriched in DisGeNET disease terms

Relative Gene Expression Disease Terms Associated Genes Adjusted P-Value

Upregulated Stomach Neoplasm HOTAIR, PIWIL1, MMP7, NOS2, MSLN, CLDN1, CLDN3, SELL, ALOX5, 
CLDN7, ARHGDIB, SPP1, IGF2BP3

0.001783

Malignant neoplasm of Stomach HOTAIR, MMP7, MUC17, LEF1, IL24, MSLN, CLDN1, CLDN3, KRT17, 
SELL, ALOX5, CLDN7, APOC1, SPP1, DPEP1, CHI3L1, ADAM8, IGF2BP3, 
HLA-DOA

0.002834

Tumor Progression HOTAIR, PIWIL1, MMP7, BCL11B, NOS2, MUC17, IL24, MSLN, CLDN1, 
CLDN3, CTSK, ALOX5, SALL4, CLDN7, ARHGDIB, SPP1, CHI3L1

0.004874

Downregulated Hypokalemia SCNN1G, SCNN1B, CLCNKA, SLC26A7 0.04758

Fig. 2  Comparison of the three datasets. Common genes among A upregulated genes and B downregulated genes. The figures are generated in 
http://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/

http://bioinformatics.psb.ugent.be/webtools/Venn/
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adjacent normals) and GSE79973 (10 tumor and 10 adja-
cent normals).

Pathway analysis of upregulated genes has identified 
CAM pathway as significant (adjusted P value: 0.004517). 
CLDN7, SELL, CLDN4, HLA-DOA, and CLDN1 genes 
were enriched in the CAM pathway. CLDN1, CLDN4, 
and CLDN7 belong to the Claudin family and involve in 
tight junction and are often upregulated in neoplastic tis-
sue. Among the family of claudins, CLDN4 and CLDN7 
are more often to be upregulated in stomach cancer as 
well as other malignancies [22]. Moreover, several other 
reports have confirmed their upregulation in cancer of 
various sites  [23]. Among the downregulated genes, the 
most significantly enriched pathways were the gastric 
acid secretion (adjusted P value: 0.001302) and min-
eral absorption pathways (Adjusted P value: 0.002315). 
ATP4A, ATP4B, KCNE2, KCNJ16, and SLC26A7 genes 
were enriched in the gastric acid secretion pathway. 
These genes are commonly downregulated genes in 

gastric adenocarcinoma as reported by many previ-
ous studies [24, 25]. ATP4A and ATP4B downregulation 
is often associated with DNA methylation and ATP4B 
could also be a potential biomarker of gastric adenocar-
cinoma  [26]. MT1A, TRPV6, MT1M, and MT1G genes 
were enriched in the mineral absorption pathway.

It is always essential to know or predict the association 
of disease with the gene or a gene set. DisGeNET is such 
a database that has a collection of genes as well as their 
associated disease derived manually from popular data-
bases like Comparative Toxicogenomic Database (Human 
Subset), UniProt, ClinVar, ClinGen OMIM, and Orphanet 
as well as extensive text mining data [27]. EnrichR offers 
the facility to analyze the gene sets against DisGeNET 
on the web to quickly understand the associated disease 
with such genes. Most interestingly, the upregulated 
genes enriched in two stomach related diseases: stomach 
neoplasm with adjusted P value of 0.001783 and malig-
nant neoplasm of the stomach with adjusted P value of 

Fig. 3  KM-Plot for the survival analysis using the common genes. AAPOC1.BSALL4.CPSAPL1.DCLIC6.ETRIM50. The plots are generated on the basis of 
the available data on KM-plotter database of 5-year survival data of gastric cancer at stage III. The red plot represents the high expression and black 
plot represents low expression of the genes in the cohort
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0.002834. Moreover, the few upregulated genes were also 
enriched in the tumor progression with adjusted P value 
of 0.004874. SPP1, MSLN, HOTAIR, CLDN1, CLDN3, 
CLDN7, ALOX5, and MMP7 genes were found to be 
common in all these three disease terms. The significant 
disease term enriched in the downregulated genes was 
hypokalemia with adjusted P value of 0.04758. However, 
hypokalemia, characterized by low K+ level, association 
with GC is not reported much worldwide. Extensive stud-
ies might be required to find out the relation of Hypoka-
lemia with GC development. The pathways and the 
disease terms along with the genes involved are provided 
in the Table 2.

Comparison of the gene set resulted from the RNA-
Seq data with the GEO datasets has allowed us to find 
out the most common genes. This comparison car-
ries the overall authenticity of differentially expressed 
genes in gastric adenocarcinoma. We found the genes 
APOC1 and SALL4 common in all the datasets used 
for the comparative study which has an impact on 
OS in GC patients. The expression levels of the com-
mon genes are provided in Supplementary Figure  2. 
Upregulation of both the APOC1 and SALL41 has an 
opposite effect on the OS. Upregulation of APOC1 is 
associated with marginal better OS, while upregula-
tion of SALL4 has extremely poor OS. The relative 
expression of APOC1 which codes for apolipoprotein 
C1 was detected upregulated in the serum of a large 
number of GC patients and was identified as a poten-
tial biomarker candidate [28]. SALL4 encodes for zinc 
finger transcription factor is reported to have a role 
in GC development and found to be overexpressed in 
GC cases  [29]. It was elucidated that upregulation of 
SALL4 involves GC by activating the Wnt/β-catenin 
signaling pathway. SALL4 was also found to be associ-
ated with poor survival in TCGA (The Cancer Genome 
Atlas) STAD data [30].

In summary, although we found significantly large 
numbers of DEGs, the bioinformatics analysis has ena-
bled us to find out the promising factors (genes) that 
have a probable impact on gastric carcinogenesis. We 
have identified important pathways that were altered in 
GC. The Disease-Gene association study provides the 
authenticity of the upregulated gen es with the associ-
ated disease. At last, comparative study of RNA-Seq 
with the other STAD patient microarray data has ena-
bled us to find out the most common genes among 
them and the survival study has converged our focus on 
the SALL4 gene. However, in-depth study with patient’s 
clinical data in larger cohorts and a higher sequencing 
depth is required to explore more hidden biological 
information in STAD that may enable the researcher to 
discover new biomarkers.

Conclusion
In conclusion, we found the genes associated with 
CAM pathway, gastric acid secretion, and mineral 
absorption pathways altered their expression in STAD 
samples. APOC1 and SALL4 genes were upregulated 
in STAD tissue and might affect the disease prognosis. 
The KM-Plotter analysis revealed that the upregula-
tion of SALL4 is associated with overall poor survival 
in GC patients and may act as a promising prognostic 
biomarker.
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