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Abstract 

Background Gastric cancer is a dominant source of cancer-related death around the globe and a serious threat to 
human health. However, there are very few practical diagnostic approaches and biomarkers for the treatment of this 
complex disease.

Methods This study aimed to evaluate the association between differentially expressed genes (DEGs), which may 
function as potential biomarkers, and the diagnosis and treatment of gastric cancer (GC). We constructed a protein-
protein interaction network from DEGs followed by network clustering. Members of the two most extensive modules 
went under the enrichment analysis. We introduced a number of hub genes and gene families playing essential roles 
in oncogenic pathways and the pathogenesis of gastric cancer. Enriched terms for Biological Process were obtained 
from the “GO” repository.

Results A total of 307 DEGs were identified between GC and their corresponding normal adjacent tissue samples in 
GSE63089 datasets, including 261 upregulated and 261 downregulated genes. The top five hub genes in the PPI net-
work were CDK1, CCNB1, CCNA2, CDC20, and PBK. They are involved in focal adhesion formation, extracellular matrix 
remodeling, cell migration, survival signals, and cell proliferation. No significant survival result was found for these hub 
genes.

Conclusions Using comprehensive analysis and bioinformatics methods, important key pathways and pivotal genes 
related to GC progression were identified, potentially informing further studies and new therapeutic targets for GC 
treatment.

Keywords Gastric cancer, Gene expression, Signaling networks, Biomarkers

Background
Gastric cancer is a common form of cancer with the sec-
ond-highest cancer-related mortality rate [1]. More than 
90% of gastric tumors are adenocarcinoma, and there is 
a poor prognosis for that. Early stages of the disease are 
often silent, so late diagnosis results in a low survival rate 
[2]. In spite of the improvement in the diagnosis of gas-
tric tumors and the development of new molecular tar-
geted drugs, there is still a lack of diagnostic biomarkers 
and effective treatments [3, 4].
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In recent years, the development of bioinformat-
ics methods and tools has made significant progress at 
determining the molecular pathogenesis of many car-
cinomas and adenocarcinomas such as breast and gas-
tric cancer [5, 6]. One way to identify biomarkers in a 
biological context is by analyzing gene expression tran-
scriptomic data [7]. Expression of many genes is dereg-
ulated once cells start to transform toward a cancerous 
phenotype, and this is different from cell to cell and tis-
sue to tissue [8, 9]. As a result, analyzing the differentially 
expressed genes (DEGs) in a specific biological context 
like gastric cancer enables us to find potential diagnostic 
biomarkers and therapeutic genetic targets. For instance, 
CXCL1, SPARC, SPP1, and SULF1 are the genes overex-
pressed together in gastric cancer [10]. In another study, 
they proposed seventeen genes differentially expressed 
between gastric cancer samples and paired normal sam-
ples responsible for tumorigenesis [11]. Upregulation of 
CCNE1 and downregulation of NR3C1 is an indicator of 
primary GC tumor, while downregulation of NR4A2 and 
upregulation of HSP90AA1 are promising markers of 
liver metastasis [12].

In the present study, a gene expression microarray 
dataset with GSE63089 accession ID was downloaded 
from Gene Expression Omnibus (GEO) database. There 
were two groups of normal and gastric cancer samples in 

the dataset statistically compared to identify genes dif-
ferent in expression between the two groups. The goal 
was to recognize new biomarkers among a great extent 
of DEGs with desired thresholds by the tools of network 
analysis and gene set enrichment analysis. Several hub 
genes and gene families engaged in biological processes 
and signaling pathways related to cancer progression 
were introduced, and their molecular mechanism leading 
to GC progression was explained.

Results
Data preprocessing
The gastric cancer gene expression dataset was imported 
into R using “getGEO” function in “GEOquery” R pack-
age. Data were visualized using PCA and boxplots to rec-
ognize biased samples. Figure 1 illustrates the PCA plot 
for all samples before outlier sample removal. Two clus-
ters appeared in the PCA plane segregated well based on 
the group definition. A number of samples were located 
at a distance from their cluster set regarded as the out-
lier or biased samples. Figure 2A depicts the sample box-
plots before outlier removal. Samples with extreme IQRs 
demonstrated the presence of batch effects in the data-
set, and they were removed as well. As a result, outlier 
samples could no longer impact the downstream process-
ing steps. Thirteen outliers were detected, presented in 

Fig. 1 Illustration of outlier samples in the PCA plot. PC1 is the eigenvector one, and PC2 is the eigenvector two. Normal samples are blue with the 
suffix N, while tumor samples are red with the suffix C. one of the apparent outlier samples is GSM1540941_N in the top right corner
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Supplementary file 1. Next, data were normalized using 
“normalize.quantiles” function in “preprocessCore” R 
package. Figure  2B depicts sample boxplots after data 
normalization.

Identifying differentially expressed genes
The cancer group was compared to the normal group in 
the dataset. There were 42 samples in the cancer group 
and 35 samples in the normal group. Genes with abso-
lute log fold change (LogFC) larger than one and adjusted 
p-value less than 0.05 were regarded as DEGs. 261 upreg-
ulated genes and 216 downregulated genes were recog-
nized. The mentioned metrics for all DEGs are presented 
in Supplementary file 2. SFRP4, CDH17, FAP, CLDN1, 
and OLFM4 were of the highest LogFC values among the 
upregulated genes, while GIF, PGA4, GKN1, ATP4B, and 

CPA2 had the lowest LogFC values among the downreg-
ulated genes.

Undirected protein‑protein interaction network
All DEGs were given to the STRING database to con-
struct the protein-protein interaction (PPI) network. 
Three sources of evidence were used to predict more 
valid interactions between genes, namely Experiment, 
Database, and Co-expression. 307 DEGs were identi-
fied to have interaction with at least one gene (protein) 
that participated in the network configuration. The giant 
component of this network with 268 nodes and 3582 
edges is illustrated in Fig. 3. At one glance, there is a clus-
ter of genes on the right-hand side of the network that 
may be responsible for one or some specific biological 
functions. Therefore, we decided to apply cluster analysis 

Fig. 2 Boxplots before (A) and after normalization (B). Sample names with the suffix N are normal, and the ones with the suffix C are cancerous. 
Values were log2 transformed. Quantile normalization equalized the percentiles of all samples
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on the network and separately carry out the enrichment 
analysis on each cluster.

Network descriptive and hub genes
The network diameter was Eleven containing AKR1C1, 
AKR1C3, CYP3A5, GSTA, GGH, CXCL,1AGT, CFTR, 
HKDC1, ALDOB, SULT1C2, and ACSM3 genes. Transi-
tivity was around 80%, edge density was about 10% and 
the mean distance was 4.2. Two important centralities, 
degree and betweenness, and regulation status for some 
genes with high centrality are presented in Table 1. CDK1 
had the highest value for both degree and betweenness 
centralities upregulated in our analysis. HGF had a high 
betweenness but a low degree. Contrary, CCNB1 and 
CCNA2 had a high degree but low betweenness. Other 
descriptives such as edge-betweenness for edges and 
closeness and average distances for each node are pro-
vided in Supplementary file 3.

Network clustering and enrichment analysis
Network giant component was clustered using the “Fast 
Greedy” algorithm in “igraph” R package. Six clusters 
emerged and Gene Set Enrichment Analysis (GSEA) was 
performed on the two largest groups. Gene sets were 
given to the “Enrichr” online tool. Figure 4A and B depict 
the enrichment results for the first module. Enrichment 
results for cluster 1 are presented in Fig. 4 while results 
for cluster 2 are presented in Supplementary file 4. In 
Fig.  4A, the first two genes, MMP1 and MMP3, were 
related to the important terms for extracellular matrix 
(ECM) organization and degradation. Moreover, the 
CXCL gene family owned a number of terms associ-
ated with cytokine- and chemokine-mediated leuko-
cyte migration. Collagen gene family was associated 
with ECM collagen fibers organization, but MMP1 and 
MMP3 genes were enriched for ECM remodeling pro-
posing that extracellular matrix in gastric tumor samples 
has been altered probably in favor of the tumor. The last 
genes were bolding some Biological processes related to 

Fig. 3 The whole network giant component. Labels are protein/gene symbols. This is a scale-free network [13] that follows a power-law distribution 
(most network nodes have a low degree while there are few nodes with a high degree)
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neutrophils activation and immune system. In cluster 
2, “tubulin-binding” had the highest p-value among the 
biological processes. In addition, Kinesins (KIF) gene 
family was enriched for several terms associated with 
microtubules activity and organization as well as Kinase 
and ATPase activities. Furthermore, “DNA-dependent 
ATPase activity” and “DNA binding” terms were related 
to the same genes.

In B, some crucial terms for focal adhesion arrange-
ment and PI3K-AKT signaling pathways were associ-
ated with many genes such as collagens, integrins, HGF, 
and so on. Moreover, matrix metalloproteinase-linked 
enriched pathways were associated with MMP1 and 
MMP3, similar to GO biological process terms. As a 
result, the role of obtained terms in gastric cancer should 
be interrogated. Some genes were involved in retinoblas-
toma protein signaling in cluster 2. A number of enriched 
genes encompassed terms related to DNA damage and 
repair, proposing that DNA damage might have occurred 
in tumor cells. RFC3, TOP2A, and FANCI were the genes 

linked to the signaling pathways engaged in Gastric Can-
cer Network 1 and 2.

Gene expression validation
Survival analysis was performed on the enriched genes in 
Fig. 5. To verify the expression and impact of the genes 
on survival rate. Collagen gene families were the domi-
nant protein family in the enrichment analysis, some 
of which had a significant p-value, < 0.05. Patients with 
higher expression levels of collagens in Fig. 4, had lower 
daily survival rates presented in Supplementary file 5. 
However, the results for the hub genes were not signifi-
cant therefore, we only validated them using expression 
profiles in TCGA and GTEx datasets. Hence, upregula-
tion of all the top five hub genes in Table 1 was verified 
in Fig. 5.

Discussion
Gastric cancer is still the fourth most common cancer 
globally and ranks as the second leading cause of cancer 
death alongside lung cancer [14]. GC is a complex dis-
ease affected by many environmental and genetic factors. 
Despite the increase in knowledge and advances in drug 
development, treatment still performs poorly due to late 
diagnosis and extremely high heterogeneity within the 
tumor and among patients. Therefore, there is an urgent 
need to identify more specific and sensitive biomark-
ers to clarify this complex disease’s pathogenesis. These 
include the telomerase reverse transcriptase promoter 
region (TP53, BRAF, and RAS), DNA hypermethylation, 
and other gene mutations that can be used to explore the 
pathogenesis of gastric cancer.

In our study, several hub genes as well as outcomes 
for functional analysis went under investigation. As a 
result of tumor heterogeneity, gene expression profiles 
(GSE) emerged from multiple modules from protein-pro-
tein interaction information. The largest (first) module 
enriched mostly for the immune system, tumor occur-
rence, and progression. Components of this cluster are 
engaged in focal adhesion formation, ECM remodeling, 
and cell migration. Some common cancer signaling path-
ways such as PI3K-Akt, chemokine-mediated signaling 
pathway, ECM-receptor interaction, and so on emerged 
[15–17]. The ECM-receptor interaction pathway also 
plays a vital role in the proliferation, differentiation, and 
metastasis of cancer cells [18]. ECM can promote can-
cer metastasis by inducing epithelial-mesenchymal tran-
sition (EMT) of tumor cells [19]. integrins, collagens, 
and matrix metalloproteinases were among the impor-
tant DEGs responsible for de novo remodeling of ECM 
and the stiffness pertinent for EMT mechanism and cell 
migration [20–22]. Integrin signals bridge between cell 
ECM and cell differentiation [23]. Survival analysis shows 

Table 1 The network hub genes. DEGs were sorted based on 
the highest degree. Status column exhibits whether a gene is 
upregulated or downregulated in the analysis

De genes Degree Betweenness Status

cdk1 102 6366.23 Up

CCNB1 94 324.32 Up

CCNA2 93 476.87 Up

CDC20 89 1735.14 Up

PBK 87 2489.09 Up

CHEK1 80 1230.53 Up

ZWINT 79 2548.27 Up

CDKN3 72 1791.96 Up

HIST1H2BB 25 747.8 Up

HIST1H2BM 25 747.8 Up

COL1A2 21 2108.26 Up

COL1A1 19 1422 Up

COL3A1 18 1345.35 Up

CXCL1 18 4174.93 Up

ORM2 15 3172.16 Down

EPHB2 14 2414.36 Up

AGT 14 1555.01 Up

FGA 12 1101.23 Down

SPARC 12 4279.68 Up

GSTA1 12 2290.52 Up

GSTA3 12 2290.52 Down

ITGA2 11 2797.82 Up

HGF 11 6349.3 Down

ZBTB16 7 3430.08 Down

RCN1 5 2436.24 Up

CFTR 5 3687.92 Up
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that all collagens enriched in our study play a pivotal role 
in integrin signaling since they are against the survival 
rate of gastric cancer patients. The majority of them even 
had a significant p-value demonstrating the significance 
of collagens upregulation in GC progression. These col-
lagens were enriched in the PI3K-Akt signaling pathway 
engaged in focal adhesion formation. Furthermore, The 
PI3K/Akt survival signals regulate gene expression and 
cell metabolism, and the reaction products catalyzed by 
PI3K essential for adhesion, survival, cytoskeleton rear-
rangement, and vesicle transport [24]. The control of 
cell growth by the PI3K/Akt pathway via regulating cell 
proliferation, cell cycle progression, and apoptosis impli-
cates a crucial role of this pathway in carcinogenesis and 
cancer development [24, 25]. Therefore, regulating ECM 
and PI3K1/AKT signaling pathways appear to be prom-
ising treatment strategies [24]. There were some CXC 
chemokine ligands (CXCL) in cluster 1 as well. They have 
important roles in lymphocyte trafficking, particularly 
the attraction of leukocytes to tumor sites, induction of 
apoptosis, regulation of cell growth, and mediation of 
angiogenesis [26, 27]. All the CXCL genes were upregu-
lated in our analysis increasing ligands for chemokine 
receptors that triggers cell migration of tumor cells 
[27]. CXCL1 was among the hub genes and possessed 

a relatively significant p-value in survival analysis. The 
higher this gene is expressed, the survival rates is reduced 
in GC patients.

The top five hub genes in the PPI network CDK1, 
CCNB1, CCNA2, CDC20, and PBK, exhibited unique 
expression Patterns. These DEGs and related functions 
would be related to the progression of gastric cancer. 
However, no significant survival result was found for 
these hub genes. We validated them by expression profil-
ing of these genes in TCGA and GTEx genomic reposito-
ries rather than the former analysis.

Cdk1 has a catalytic subunit that promotes the 
M-phase process essential for the G1/S and G2/M phase 
transitions during cell proliferation [28, 29]. Besides, cyc-
lin B-Cdk1 is involved in cell survival at mitotic check-
points called spindle checkpoints [30, 31]. In the past 
ten years, a large number of studies have shown that the 
disorder of CDK1 not only leads to the rapid growth of 
tumors but also leads to the spontaneous proliferation 
of cancer cells [32, 33]. Prior studies have indicated that 
aberrant activation of CDKs and their modulators exist 
in many tumors [34]. Neganova et al. reported that CDK1 
is a critical element of cell cycle regulation, especially 
mitosis, and plays a vital role in maintaining the pluripo-
tency and genome stability of human pluripotent stem 

Fig. 4 Gene Set Enrichment Analysis for cluster 1 of the PPI network. Part A illustrates the enriched terms for biological process from GO repository. 
Part B shows the enriched pathways from WikiPathways signaling datasets. Red cells reveal the involvement of the genes in the enriched elements. 
Enriched terms were sorted based on the highest p-value
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cells [35]. In addition, CDK1 can activate the JAK/STAT3 
signaling pathway through the phosphorylation of JAK1, 
thereby promoting the progression of colorectal cancer 
(CRC) [36].

Cancer is characterized by cell cycle dysregulation. 
CCNB1, Cycline B1, is one of the central genes in the 
first module of the PPI network whose product pro-
motes the transition of cells from the G2 to M phase 
[37]. CCNB1 depletion or stable gene silencing of 
CCNB1 can inhibit human tumor cell proliferation and 
induce apoptosis [38]. Related studies have shown that 
the overexpression of CCNB1 is connected to the clini-
cal stage, lymph node metastasis, and low survival rate 
of GC patients [39]. Furthermore, CDK1 and CCNB1 
are highly expressed in neuroblastoma (NB) cell lines 
enhancing their proliferation [40]. The important role 
of the CDK1/CCNB1 complex in tumor cell survival 
was confirmed [34]. Finally, A recent study reported 
that cyclin B1 and cyclin B2 are the most important 
candidate biomarkers in GC [41].

Like CCNB1, Cyclin A2 (CCNA2) is another hub 
gene a member of the cyclin family that functions as a 
regulator of cyclin-dependent kinases (CDKs) affected 
by KRAS gene mutations. It is also a predictive bio-
marker of gastric cancer associated with Polo-like 
kinase 1 (PLK1), a mitotic serine/threonine-protein 
kinase [42]. Cyclin B1 and Cyclin A2 form a complex 
with CDK1 to trigger G2/M transition [43]. Upregu-
lation of CCNA2 is found in numerous types of can-
cer, including pancreatic ductal adenocarcinoma and 
colorectal cancers [44, 45]. CCNA2 has the potential 
to be a new diagnostic biomarker and cancer therapy 
target that aims to monitor the efficacy of breast can-
cer chemotherapy [46]. Furthermore, these two genes 
were present in cluster 2 of the PPI network enriched 
alongside Kinesin gene family (KIF). KIF proteins are 
the hub proteins in the intracellular transport system 
by transport of cellular cargo. Mitotic spindle kinesins 
are essential for cell division. Therefore, genes in clus-
ter 2 were engaged mostly in cellular proliferation, such 

Fig. 5 Expression profiling of the hub genes. Data were firstly TPM normalized and then log2 transformed. The median for all the hub genes in 
gastric tumor samples was larger than in normal samples



Page 8 of 10Fadaei et al. Journal of the Egyptian National Cancer Institute            (2023) 35:8 

as TOP2A and RFC3. Furthermore, many non-mitotic 
kinesins are associated with tumorigenesis and antican-
cer drug resistance [47].

Cell division cycle 20 homolog (CDC20) is an onco-
genic gene that has long been recognized as one of the 
significant regulatory components of the cell cycle [48, 
49]. Its product forms a complex with Anaphase Pro-
moting Complex (APC) necessary for spindle assembly 
and chromosome segregation [50]. Overexpression of 
CDC20 has been reported in various malignant tumors 
[51]. It has been proposed to be a promising therapeu-
tic target for cancer treatment as well [50]. The high 
expression of CDC20 is associated with increased 
tumor grade and stage in the majority of common 
carcinoma and adenocarcinoma [52]. P53 negatively 
regulates CDC20 expression, and silencing of CDC20 
significantly inhibits cell growth in vitro [53]. Inactiva-
tion of p53 has been observed in various cancer tissues, 
including acute myeloid leukemia and lung cancer [54–
56]. This effect might be attributed to CDC20 upregu-
lation in gastric cancer. APC/CDC20 complex can 
suppress apoptosis by targeting the apoptotic protein 
BIM for destruction and ubiquitination [57, 58].

PBK is a serine/threonine-protein kinase related to 
the mitogen-activated protein kinase kinase (MAPKK) 
family. Overexpression of this gene has been implicated 
in tumorigenesis [59, 60]. PBK gene is upregulated in 
various types of cancers and tumors such as bladder 
cancer, brain tumor, breast cancer, hepatocarcinoma, 
lung cancer, and gastric cancer [61–65]. PBK is also 
located in the nucleus and is involved in the phos-
phorylation of histone H3 and the inhibition of p53 in 
colorectal and breast cancer cells in different cancers 
[66]. PBK is connected to geranylgeranylation signal-
ing, most likely in advanced-stage cancers [67], which 
is essential for cancer cell proliferation, confirming 
that PBK is an important molecular target for cancer 
therapy.

Conclusion
In conclusion, chemokine ligands, integrins, collagens, 
and matrix metalloproteinases, and hub genes including 
CDK1, CCNB1, CCNA2, CDC20, and PBK have been 
identified to be associated with GC progression. Through 
GO and pathway enrichment of the two most extensive 
modules, we identified the functions and pathways of the 
hub genes as well as genes responsible for cell differentia-
tion and migration in cluster 1 and the ones responsible 
for cell cycle progression in cluster 2. In vitro studies are 
further required to test the functional results that pave a 
prospective way towards gastric cancer treatment.

Methods
Database searching to find a suitable experiment
Gene Expression Omnibus (http:// www. ncbi. nlm. nih. 
gov/ geo/) database was searched to detect an experiment 
containing high-quality transcriptomic samples in con-
cordance to the study design. Searches were filtered for 
Homo sapiens, while gastric cancer and metastasis were 
the search keywords. Microarray raw data with accession 
numbers GSE63089 was selected and the gene expression 
matrix was downloaded from GEO using “GEOquery” R 
package version 2.5 [68]. The dataset contained 45 nor-
mal samples and 45 samples from gastric cancer patients. 
All the sample IDs are listed in Supplementary file 1.

Identifying differentially expressed genes
Outlier samples were identified and removed using the 
PCA method. Next, data were normalized using the 
quantile normalization method [69]. GPL5175 annota-
tion dataset was downloaded from GEO, and annotation 
was carried out by mapping probesets to the gene sym-
bols. “Limma” R package, which applies linear models 
on the expression matrix, was utilized to discover DEGs 
between three groups of samples [70]. Genes with abso-
lute log fold change larger than 1, and Benjamini Hoch-
berg adjusted p-value [71] less than 0.05 were selected as 
the DEGs.

Network construction
STRING database was used to generate the Interactions 
between all DEGs according to five sources of evidence, 
namely Experiments, Databases, Co-expression, Gene 
fusion, and Co-occurrence. Using “igraph” package ver-
sion 1.2.4 in R software [72], the giant component of the 
network was extracted from the whole network. Next, 
different network descriptive and centralities were com-
puted employing the same package.

Enrichment analysis
Enrichment analysis was performed using the “Enrichr” 
online tool [73]. Enriched terms for Biological Process were 
obtained from the “GO” repository. For pathway enrich-
ment analysis, the “wikiPathways” signaling repository ver-
sion 2019 for humans was used. Enriched terms with the 
top score and a p-value less than 0.05 were selected.

Survival analysis and expression profiling
Genes were given to the “GEPIA2” web server, and TCGA 
and GTEx gene expression data from stomach adenocar-
cinoma were employed for survival analysis and expres-
sion profiling [74, 75]. Kaplan-Meier estimate was used to 
perform survival analysis [76]. Overall survival was meas-
ured based on days with a 95% confidence interval, and the 
median was used as the cutoff for grouping. For expression 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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profiling, the LogFC cut-off was set on one and q-value 
on 0.01. Data were Log2 transformed, and the “LIMMA” 
method was used for the statistical inference.
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