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Abstract 

Background Gene selection from gene expression profiles is the appropriate tool for diagnosing and predicting 
cancers. The aim of this study is to perform a Precision Lasso regression model on gene expression of diffuse large B 
cell lymphoma patients and to find marker genes related to DLBCL.

Methods In the present case–control study, the dataset included 180 gene expressions from 14 healthy individuals 
and 17 DLBCL patients. The marker genes were selected by fitting Ridge, Lasso, Elastic Net, and Precision Lasso regres-
sion models.

Results Based on our findings, the Precision Lasso, the Ridge, the Elastic Net, and the Lasso models choose the most 
marker genes, respectively. In addition, the top 20 genes are based on models compared with the results of clini-
cal studies. The Precision Lasso and the Ridge models selected the most common genes with the clinical results, 
respectively.

Conclusions The performance of the Precision Lasso model in selecting related genes could be considered more 
acceptable rather than other models.
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Introduction
Lymphomas are a group of malignant tumors that involve 
lymphocytic cells or the immune system. These diseases 
often originate in the lymph nodes but may be diagnosed 
first in extranodal tissues [1]. Lymphoma is divided into 
two types: Hodgkin’s and non-Hodgkin’s. Non-Hodgkin’s 
lymphoma (NHL) is a group of lymphoid-derived malig-
nancies that are classified according to their clinical and 
biological characteristics. Non-Hodgkin’s cancer is one 
of the most common blood cancers. It is the eighth most 
common cancer in men and the eleventh most com-
mon cancer in women [2]. Non-Hodgkin’s lymphoma 

has several subgroups, including diffuse large B cell lym-
phoma (DLBCL), Burkitt lymphoma (BL), mantle cell 
lymphoma (MCL), gastric mucosa-associated lymphoid 
tissue (MALT), follicular lymphoma (FL), and others [3].

Diffuse large B cell lymphoma is the most common 
subtype of NHL lymphoma, accounting for 30% to 40% 
of all newly diagnosed cases [4]. NHL is the seventh most 
common cancer in the USA, with 19.6 new cases per 
100,000 people between 2012 and 2016. The 5-year rela-
tive survival rate is 63% for DLBCL and 88% for FL. In 
recent years, many studies have confirmed that genetic 
factors are closely related to DLBCL [5, 6].

Microarray technology has advanced rapidly in bio-
technology. In fact, molecular hybridization tests that 
rely on light visualization are now feasible in the area of 
nanotechnology in DNA microarrays. The two main uses 
of DNA chips are studies of transcriptomic and genetic 
mutations. In humans, the transcriptome is used to study 
differences in the genes expression levels in natural cells 
compared to tumor cells [7].
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Advancements have been made in diagnostic and ther-
apeutic technologies, but DLBCL is not yet predictable. 
Researches have shown that microarray technology has 
the potential to diagnose and predict cancer. In addition, 
the microarray expression profile can differentiate can-
cer based on cellular nature and growth stage. Therefore, 
microarray plays an important role in the discovery of 
cancer-related genomic abnormalities [3].

The technology for measuring gene expression levels 
and assessing variability for big data is a high-dimen-
sional technology. Due to the large number of variables, 
it is not possible to use the classical hypothesis test. In 
other words, in the classical hypothesis tests, each vari-
able tests independently. So, microarray data could be 
used for linear regression models, which simultaneously 
tests all variables. However, it is not possible to estimate 
the parameters with a linear regression model, and spe-
cial methods should be used to reduce the number of 
variables or to ignore the minimizing the sum of squared 
errors [8].

In 1970, Harley and Kennard introduced Ridge regres-
sion model by adding the term “penalty” to the estimator 
of the ordinary least square. They tried to fix or reduce 
the sum of squared errors by using the penalty function 
on the parameters of the regression model. Therefore, the 
Ridge regression estimator in high-dimensional data was 
able to estimate the parameters using a linear combina-
tion of the estimator of the ordinary least square [9]. In 
1996, Tibshirani introduced the Lasso regression model 
in which used the method of dimension reduction vari-
ables. He also used the method of minimizing the sum of 
square error to estimate the parameters. In this model, 
the number of parameters is controlled using a “penalty” 
function on the sum of the absolute values of the regres-
sion model coefficients. Despite solving the problem of 
estimating the parameters in multiple regression, the 
Lasso in the following two conditions does not provide a 
good result, which are:

(1) If the two explanatory variables are highly corre-
lated, they have a very similar effect on the response 
variable

(2) If the explanatory variables are collinear

In the above conditions, the Lasso randomly selects 
one of the variables and causes the wrong result [8]. Zou 
and Hastie, in 2005, proposed the Elastic Net regression 
model.

The Elastic Net model combined the Lasso and Ridge 
with the placement of the second degree penalty equa-
tions. This model involved both the dimension reduction 
and the least squares estimation [10]. In the following 
years, many methods have been introduced to solve these 

two problems; a method that solves both of the above 
problems was proposed by Wang et al. in 2018 under the 
title of the Precision Lasso regression model [8].

The present study uses gene expression data from 
DLBCL patients that have been extracted by microar-
ray technology. In this type of high-dimensional data, a 
high correlation between variables is also a problem. This 
study aims to apply Precision Lasso model on microarray 
data of DLBCL patients and finding gene markers related 
to DLBCL. Also, Precision Lasso compares with different 
penalty models. Therefore, patients benefit from more 
effective treatment opportunities by diagnosing and pre-
dicting the DLBCL cancer.

Methods
The methods used in this research are consistent with the 
related guidelines. The steps for conducting this research 
are presented in Fig.  1. Overall, the method includes 
dataset collection, gene selection by regression models, 
and model evaluation which is described in the following 
sections.

Dataset collection
In the present case–control study, DLBCL data was used, 
which included 180 genes expression and 31 individuals. 
The data is available on the following site: https:// www. 
ncbi. nlm. nih. gov/. The dataset includes blood samples 
from 31 donors, including 14 healthy individuals and 17 
DLBCL patients. The notable point about the dataset is 
that when donating blood, people have no symptoms 
of the disease and are healthy enough to donate blood. 
According to Jorgensen et  al., this is the first study of 
the microarray expression profile of apparently healthy 
individuals taken several years before the diagnosis of 
DLBCL [11].

Gene selection
According to the dataset of the study, the most appro-
priate regression models were processed on these data. 
Regression models include the Ridge, the Lasso, the Elas-
tic Net, and the Precision Lasso.

Shrinkage regression models
When the number of variables p is greater than the num-
ber of observations (p ≫ n), the ordinary least square 
method cannot be used to estimate linear regression 
coefficients. Another issue is determining the number of 
independent variables that should be used in the model. 
As the number of variables increases, over-fitting occurs, 
and as they decrease, we may encounter under-fitting.

To solve the problem of estimating parameters in high-
dimensional data in the last two decades, many methods 
were proposed based on the dimension reduction and the 
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converted minimum squared error estimator. Here, four 
different penalty methods are described with their advan-
tages and disadvantages.

Ridge regression model
The best way to estimate the regression model parame-
ters, due to the lowest error, is the ordinary least square 
method. However, it cannot be expected minimum vari-
ance for the estimators. Therefore, we need to find a way 
to select the right number of estimators. The application 
of Ridge regression is clarified in such situations. The 
estimator of Ridge regression is not unbiased but has a 
smaller variance than the ordinary least square method. 
In the ridge regression model, using the constraint 
∥β∥2 ≤ C2 on the parameters of the regression model, it 
tries to fix or reduce the sum of the squares of the param-
eters, so this constraint was added by the ordinary least 
square method.

One of the features of the Ridge regression model is 
that the penalty function reduces the coefficients to zero 
but does not make any of them zero. Of course, this does 
not apply to a so large λ. This feature challenges the inter-
pretation of a model with a large number of variables [9].

Lasso regression model
The Lasso regression model provides a suitable method 
for modeling the response variable based on the lowest 
and most appropriate number of explanatory variables. 
This method separates the more suitable variables from 
the rest of the variables by providing a simpler model. 
That is why it is known as the Lasso method, which 
is a Canadian word meaning snare. In 1996, Robert 

Tibshirani, by using a penalty function on the sum of the 
absolute values of the regression model coefficients, con-
trolled the number of parameters. In this condition, the 
sum of the squared estimate of errors of the Lasso model 
writes as follows:

λ is a regulating parameter, meaning that if its value is 
zero, the model will become linear regression, and all var-
iables will be present in it. If its value increases, the num-
ber of explanatory variables in the model will decrease. 
One of the main goals of the Lasso is to improve the 
interpretation of the model by determining a smaller sub-
set of explanatory variables that have the most effect [7].

Elastic Net regression model
The Elastic Net regression model was introduced by Zu 
and Hasti. Elastic means flexibility. In fact, the Elastic Net 
model is a combination of Lasso and Ridge models and 
uses second degree penalties. This method is used when 
the Lasso cannot select the grouping variable by one cat-
egory and ignore the other categories. Using this model 
can be useful for the dataset with high correlation [10].

Precision Lasso regression model
The regular regression model, introduced by Wang 
et  al. as Precision Lasso proved the instability and 
inconsistency in the Ridge, Lasso, and Elastic Net 
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Fig. 1 Steps of conducting the research
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models primarily by using a condition called irrepre-
sentable. The condition is as follows:

In this condition, x(1) is a set of active variables x(2) is a 
set of inactive variables and η is a positive constant vector.

The instability of the Lasso points to its inability to detect 
the effects of correlated explanatory variables. Since corre-
lated explanatory variables cannot analyze separately and 
by classical statistics, a simple way to achieve this goal is to 
determine similar weights for correlated variables. Consid-
ering the Trace Lasso regression model, a set of weights in 
which the correlated variables add to the other variables. 
Inconsistency is another disadvantage of the Lasso, which 
refers to the collinearity between variables. To solve the 
two problems of instability and inconsistency, for the first 
time, Wang et  al. proposed γ a regulatory parameter to 
combine the two solutions. However, for example, if there 
is instability, γ = 1, and if there is inconsistency, γ = 0, and 
if there are both of them, γ = 1/2. The strategy introduced 
can be extended to other ℓ functions more simply. As an 
example, when the Response variable is dichotomous, by 
substituting ℓ with the negative in the likelihood logarithm, 
the Precision Lasso model is converted into a logistic 
regression model. This formula is applied in case–control 
data as those in the present study.

In the present study, due to the high correlation of 
genetic data, we tried to find cancer-related gene markers 
using the above four penalty methods [8].

Model evaluation
We evaluated shrinkage regression models using two 
steps. In the first step, according to previous studies, the 
expressed genes caused by DLBCL disease were identi-
fied. Then, we compared the genes that were selected 
using the models with the identified genes. In the next 
step, the holdout method was used with 10 folds. Then, 
the goodness of fit of regression models was compared 
based on the area under the ROC curve (AUC) and aver-
age precision score (AP-Score) [12].

Analysis of gene expression data was performed using 
R 3.6.2 and Python 2.7 software.

Results
This study applied four penalty regression models, 
including the Ridge, the Lasso, the Elastic Net, and 
the Precision Lasso regression models, to select best 
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genetic markers from the DLBCL cancer gene expres-
sion dataset. This dataset consists of 180 genes belong-
ing to 31 individuals. These include 17 DLBCL patients 
and 14 healthy people. The dataset includes two chal-
lenges: the very high ratio of the number of variables 
to individuals and a high correlation between the 
genes. Therefore, selecting the more effective genes in 
the model would better predict DLBCL cancer. Four 

Table 1 Selected genes by regression models with high level 
of expression genes related to DLBCL cancer based on clinical 
studies

miRNA Regression model

Lasso Ridge Elastic Net Precision Lasso

hsa-let-7i-3p ✓ ✓
hsa-let-7b-3p ✓
hsa-miR-18a-3p ✓ ✓
hsa-miR-20a-3p ✓
hsa-miR-27a-3p ✓ ✓
hsa-miR-29a-5p ✓ ✓
hsa-miR-33a-5p ✓
hsa-miR-103a-3p ✓
hsa-miR-107 ✓
hsa-miR-126-3p ✓
hsa-miR-197-3p ✓
hsa-miR-200a-3p ✓
hsa-miR-296-5p ✓
hsa-miR-326 ✓ ✓ ✓
hsa-miR-331-3p ✓ ✓
hsa-miR-421 ✓ ✓

Table 2 Selected genes by regression models with low level 
of expression genes related to DLBCL cancer based on clinical 
studies

miRNA Regression model

Lasso Ridge Elastic Net Precision Lasso

hsa-miR-10a-5p ✓
hsa-miR-30d-5p ✓
hsa-miR-95 ✓
hsa-miR-148a-3p ✓
hsa-miR-154-5p ✓ ✓
hsa-miR-190a ✓
hsa-miR-223-5p ✓ ✓ ✓ ✓
hsa-miR-328 ✓ ✓
hsa-miR-342-3p ✓ ✓
hsa-miR-361-3p ✓ ✓
hsa-miR-584-5p ✓
hsa-miR-652-3p ✓ ✓
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statistical models were fitted to the gene expression 
dataset. The maximum twenty genes with the highest 
coefficient in each regression models were selected and 
were compared with the DLBCL cancer-related genes 
based on results of clinical studies.

Table 1 showed the selected genes by regression mod-
els that had high level of expression related to DLBCL 
cancer based on clinical studies.

Table 2 showed the selected genes by regression mod-
els that had low level of expression related to DLBCL 
cancer based on clinical studies.

Based on results in Tables  1 and 2, the Precision 
Lasso had the biggest share in the selection of DLBCL 
cancer-related genes, followed by Ridge, Elastic Net, 
and Lasso.

Figure  2 showed ROC curves of binary logistic data 
for each models. The Ridge model had lowest AUC 
value and the Precision Lasso, Elastic Net, and Lasso 
had high AUC value.

Table  3 showed the goodness of fit index, AUC, and 
AP-Score for the understudy regression models based on 
holdout method. The Precision Lasso models had high-
est AP-Score. Also, the Lasso, Elastic Net, and Precision 
Lasso models had high AUC value.

Finally, the relationship of maximum the 20 genes that 
had the highest coefficient in the regression model in 
these four regression models were investigated with dif-
ferent types of cancer. According to Table  4, the Preci-
sion Lasso regression model selected the most DLBCL 
cancer-related genes.

Fig. 2 ROC curve for Ridge, Lasso, Elastic Net, and Precision Lasso models

Table 3 The goodness of fit test for regression models

Regression model AUC AP-Score

Ridge 0.66 0.45

Lasso 1 0.90

Elastic Net 1 0.90

Precision Lasso 0.96 0.98
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Table 4 Relationship among the top 20 selected genes based on regression models and different types of cancer

Method miRNA Disease Target 
(DLBCL)

Reference

Ridge hsa-let-7i-3p hepatocellular carcinoma (HCC) [13]

hsa-miR-361-3p non-small cell lung cancer (NSCLC) [14]

hsa-miR-421 diffuse large B-cell lymphoma (DLBCL) * [15]

hsa-miR-136-5p carcinoma [16]

hsa-miR-223-5p diffuse large B-cell lymphoma (DLBCL) * [17]

hsa-miR-29a-5p diffuse large B-cell lymphoma (DLBCL) * [18]

hsa-miR-331-3p diffuse large B-cell lymphoma (DLBCL) * [19]

hsa-miR-425-3p renal cell carcinoma (RCC) [20]

hsa-miR-296-5p diffuse large B-cell lymphoma (DLBCL) * [21]

hsa-miR-376a-3p hepatocellular carcinoma (HCC) [22]

hsa-miR-335-5p gastric cancer [23]

hsa-miR-584-5p renal cell carcinoma (RCC) [24]

hsa-miR-500a-5p breast cancer [25]

hsa-miR-33a-5p lung cancer [26]

hsa-miR-18a-3p diffuse large B-cell lymphoma (DLBCL) * [27]

hsa-miR-328 diffuse large B-cell lymphoma (DLBCL) * [28]

hsa-miR-154-5p carcinoma [29]

hsa-miR-30d-5p non-small cell lung cancer (NSCLC) [30]

hsa-miR-326  non-small cell lung cancer (NSCLC) [31]

hsa-miR-30e-3p non-small cell lung cancer (NSCLC) [32]

Lasso hsa-miR-223-5p diffuse large B-cell lymphoma (DLBCL) * [17]

hsa-miR-197-3p diffuse large B-cell lymphoma (DLBCL) * [33]

hsa-miR-652-3p non-small cell lung cancer (NSCLC) [34]

hsa-miR-27a-3p diffuse large B-cell lymphoma (DLBCL) * [17]

hsa-miR-342-3p non-small cell lung cancer (NSCLC) [35]

Elastic Net hsa-miR-223-5p diffuse large B-cell lymphoma (DLBCL) * [17]

hsa-miR-197-3p diffuse large B-cell lymphoma (DLBCL) * [33]

hsa-miR-27a-3p diffuse large B-cell lymphoma (DLBCL) * [17]

hsa-miR-326 non-small cell lung cancer (NSCLC) [31]

hsa-miR-148a-3p gastric cancer [36]

hsa-miR-652-3p non-small cell lung cancer (NSCLC) [34]

hsa-miR-342-3p non-small cell lung cancer (NSCLC) [35]
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Discussion
The study used gene expression dataset from the DLBCL 
patients. Four penalty regression models were applied, 
including the Ridge, the Lasso, the Elastic Net, and the 
Precision Lasso.

In particular, these regression models are suitable for 
such dataset, including the number of explanatory varia-
bles greater than the number of observations, with a high 
correlation between variables. These models selected 
genes related to DLBCL cancer. The results were reported 
by statistical and clinical comparison. Among the regres-
sion models under study, Precision Lasso, Ridge, Elas-
tic Net, and Lasso regression models selected genetic 
markers (high and low expression levels) associated with 
DLBCL cancer, respectively. Also, the top 20 genes were 
selected based on these regression models and compared 
with results of clinical studies. In this comparison, Preci-
sion Lasso regression and Ridge regression models were 
the most accurate, respectively, and Elastic Net and Lasso 
regression models selected the least number of genetic 
markers associated with DLBCL cancer.

In the following, the AUC and AP-Score were used to 
compare the goodness of fit of models. The ROC curve 
was plotted for the models. The Ridge model had the 
lowest area under ROC curve diagram, and the Preci-
sion Lasso, Elastic Net, and Lasso had highest AUC 
value. Also, the AP-Score was lowest for Ridge model, 
but the highest AP-Score was calculated for Precision 
Lasso. Based on the goodness of fit of the Precision 
Lasso, Lasso and Elastic Net models are very accurate.

The increasing importance of variable selection for 
high-dimensional data in various sciences has led to 
the introduction of new methods. Recently, the use 
of shrinkage methods has received much attention. 
In 2016, Padthe et  al. showed that among the penalty 
regression models, the Elastic Net regression model 
performed better [45]. In 2018, Farhadi et al. compared 
the three models of Ridge, Lasso, and Elastic Net regres-
sion on simulated data. In this study, the Ridge regres-
sion model had the worst performance, and the Elastic 
Net regression model had the best performance [46]. 
In 2018, Wang et  al. by comparison between different 
regression models on breast cancer gene expression 

Table 4 (continued)

Method miRNA Disease Target 
(DLBCL)

Reference

Precision Lasso hsa-miR-190a diffuse large B-cell lymphoma (DLBCL) * [37]

hsa-miR-208a Non-small cell lung cancer (NSCLC) [38]

hsa-miR-10a-5p renal cell carcinoma [39]

hsa-miR-182-5p hepatocellular carcinoma (HCC) [40]

hsa-let-7i-3p hepatocellular carcinoma (HCC) [13]

hsa-miR-20a-3p diffuse large B-cell lymphoma (DLBCL) * [41]

hsa-miR-1

hsa-miR-92b-3p esophageal squamous cell carcinoma (ESCC) [42]

hsa-miR-29a-5p diffuse large B-cell lymphoma (DLBCL) * [18]

hsa-miR-361-3p non-small cell lung cancer (NSCLC) [14]

hsa-miR-18a-3p diffuse large B-cell lymphoma (DLBCL) * [27]

hsa-miR-223-5p diffuse large B-cell lymphoma (DLBCL) * [17]

hsa-miR-95 Carcinoma [43]

hsa-miR-200a-3p diffuse large B-cell lymphoma (DLBCL) * [44]

hsa-miR-154-5p Carcinoma [29]

hsa-miR-328 diffuse large B-cell lymphoma (DLBCL) * [28]

hsa-miR-326 non-small cell lung cancer (NSCLC) [31]

hsa-miR-421 diffuse large B-cell lymphoma (DLBCL) * [15]

hsa-miR-425-3p renal cell carcinoma (RCC) [20]

hsa-miR-331-3p diffuse large B-cell lymphoma (DLBCL) * [19]
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showed that the Precision Lasso and Trace Lasso regres-
sion models were more accurate than other penalty 
regression models.

Conclusion
According to our results, the performance of Precision 
Lasso regression model in selecting gene markers is more 
acceptable than other models. It suggests other regres-
sion models, including the Adaptive Lasso and Trace 
Lasso regression model use in future studies. There are 
also many data mining methods, such as machine learn-
ing, to compare with regression models. High-dimen-
sional data in various sciences has expanded so much 
that a science called data science has been developed as 
an interdisciplinary science. This study was performed on 
a DLBCL dataset that had been extracted in a very small 
sample size with microarray technology. Also, it efforts 
theses regression models compare based on results of 
larger sample of microarray data.
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