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Abstract 

Background Glioblastoma multiforme (GBM) is one of the most malignant types of central nervous system tumors. 
GBM patients usually have a poor prognosis. Identification of genes associated with the progression of the disease 
is essential to explain the mechanisms or improve the prognosis of GBM by catering to targeted therapy. It is crucial 
to develop a methodology for constructing a biological network and analyze it to identify potential biomarkers asso-
ciated with disease progression.

Methods Gene expression datasets are obtained from TCGA data repository to carry out this study. A survival analysis 
is performed to identify survival associated genes of GBM patient. A gene co-expression network is constructed based 
on Pearson correlation between the gene’s expressions. Various topological measures along with set operations 
from graph theory are applied to identify most influential genes linked with the progression of the GBM.

Results Ten key genes are identified as a potential biomarkers associated with GBM based on centrality measures 
applied to the disease network. These genes are SEMA3B, APS, SLC44A2, MARK2, PITPNM2, SFRP1, PRLH, DIP2C, CTSZ, 
and KRTAP4.2. Higher expression values of two genes, SLC44A2 and KRTAP4.2 are found to be associated with pro-
gression and lower expression values of seven gens SEMA3B, APS, MARK2, PITPNM2, SFRP1, PRLH, DIP2C, and CTSZ are 
linked with the progression of the GBM.

Conclusions The proposed methodology employing a network topological approach to identify genetic biomarkers 
associated with cancer.
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Introduction
Among all different types of cancer, GBM is one of the 
most common brain tumors with high mortality. It is the 
most aggressive primary intracranial tumor, displaying 
heterogeneity and rapid proliferation [1]. There are vari-
ous treatment options available to treat GBM such as sur-
gical resection, chemotherapy, and radiotherapy; it is still 
a deadly disease with a rapid prognosis. Patients usually 
have a median survival of approximately 14 to 15 months 
from the date of diagnosis [2]. Overall survival of the 
GBM patients is also very poor. Therefore, developing an 
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appropriate and effective strategy to analyze the overall 
survival of the GBM patient and determine the progres-
sion of the disease is very crucial.

Tumor development is a complex pathological pro-
cess that involves multiple genetic alterations [3]. In 
most cases of cancer, these alterations happen one after 
another in different genes in a specific group of cells over 
time to cause malignancy. That is the reason genes are 
considered to be one of the causes behind cancer devel-
opment and progression. Therefore, understanding more 
about these genetic markers is essential in cancer study. It 
helped exceptionally to improve the early diagnosis and 
prognosis of the disease [4, 5].

Deciphering the biological networks underlying can-
cer is undoubtedly important for understanding the 
molecular mechanisms of the disease and identifying 
effective biomarkers to determine cancer progression 
[6]. Achievements in identifying potential biomarkers 
by constructing gene co-expression networks encour-
age researchers to study the direct possible relationship 
between genes and disease.

GBM datasets from the TCGA (The Cancer Genome 
Atlas) repository that include a large number of 
molecular features [7] is obtained for this study. A 
genomic dataset known as the DNA methylation data-
set is obtained from TCGA which is preprocessed 
and prepared for the survival analysis [8]. Survival-
associated genes are identified through time to event 
data analysis which is considered for further analysis. 
A separate gene co-expression network is constructed 
from 156 survival outcome associated genes identified. 
For constructing the biological network, three differ-
ent correlation measures are used; those are ‘Pearson’, 
‘Spearman,’ and ‘Kendall’ [9]. Structural and topo-
logical properties of the network are useful to analyze 
these networks because network topologies describe 
the ways in which the elements of a network are con-
nected as well as how they communicate. Network 
centrality measures are found useful in network analy-
sis [10]. These are used to determine the importance 
of the node in the network; it signifies a type of flow 
or transfer across the network. This allows centrali-
ties to be classified by the type of flow they consider 
important [11]. Centrality can also be interpreted 
as involvement in the cohesiveness of the network. 
This allows centralities to be classified based on how 
they measure cohesiveness [12]. Various centrality 
measures are found useful in network analysis; those 
are degree centrality, eigenvector centrality, close-
ness centrality, and betweenness centrality to identify 
biomarkers that are closely associated with the pro-
gression of glioma [13]. Degree centrality of a node 

determines how many other nodes in the network it 
is connected with. Betweenness centrality of a node is 
the sum of the fraction of all-pairs shortest paths that 
pass through the node. Closeness centrality measures 
how short the shortest paths are from node i to all the 
other nodes in the network. Eigenvector centrality of a 
particular node is based on the centrality of its neigh-
bors. There are other centrality measures available in 
the literature. In order to perform an analysis of gene 
co-expression networks, these 4 are found to be more 
relevant and important [14, 15].

Materials and methods
Data collection and preprocessing
GBM datasets were downloaded from TCGA (https:// 
portal. gdc. cancer. gov/). TCGA repository is a rich source 
of multiple omics data represented by varied genomic pro-
files. The DNA methylation profile from human glioblas-
toma samples was obtained from the GDC portal. TCGA 
DNA methylation data of GBM patients comes with epi-
genetic markers that are helpful to understand suspected 
regulatory roles in disease progression [16]. The GBM 
datasets obtained from TCGA required filtering out lower 
quality data points and outliers [7]. It is also necessary to 
perform pre-processing steps like cleaning to remove data 
inconsistency, data transformations, and data reduction as 
per the requirement of the study to conduct survival analy-
sis [17].

Methodology
In the first step of implementation, Preprocessing is 
performed on the GBM dataset which consists of a gene 
identifier, expression value for each gene for 76  GBM 
patients along with their survival information. Genomic 
data get produced at the rate of 10 terabytes a day and 
require complicated processing to transform massive 
amounts of noisy raw data into biological information 
[18]. It is very essential to perform end-to-end process-
ing of genomic data, which includes data aligning, vari-
ation discovery, and deep analysis. In this study also, 
filtering is integrated into the preprocessing phase in 
order to prepare data for applying appropriate tech-
niques for identifying survival outcome associated 
genes [19].

A method known as survival analysis is implemented 
to identify genes associated with the cancer patient’s 
overall survival. Various methods of non-parametric, 
semi-parametric, and parametric methods of survival 
analysis are studied and analyzed to find one which is to 
be applied finally. The Cox proportional hazards regres-
sion model is used to identify possible factors associ-
ated with patients’ overall survival [20]. However, overall 
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survival (OS) is defined as time between dates of diagno-
sis till date of death or last follow up. In entire study we 
assume that progression of the disease is represented by 
earlier death, so patient died earlier just because rapid 
progression of the disease corresponding to the penetrat-
ing genes (genetic biomarkers) associated for it. So, we 
explored the penetrating genes for death and defined as 
disease progressive genes. This model is used to evaluate 
the effect of those factors and subsequently examine how 
a genetic marker controls the rate of a particular event 
(e.g., death) at a specific point in time. This is termed as 
hazard rate. Influencing factors are covariates in the sur-
vival-analysis literature. Cox proportional hazards regres-
sion model is applied to the DNA methylation data. Out 
of 24,925 genes, 156 are identified as significant genes (p 
value ≤ 0.01) associated with the patient’s overall survival 
from the genomic dataset as an outcome of this step as 
shown in Fig.  1. Gene co-expression networks are con-
structed from these 156 genes extracted from the DNA 
Methylation dataset [21].

In the third step, the gene co-expression network 
is constructed by using three methods of correlation 

measure, i.e., Pearson, Kendall, and Spearman. Cor-
relation measures are selected in order to establish a 
link between two significant genes while constructing 
a network [22]. A threshold value is selected arbitrar-
ily to focus on moderate correlation to represent in the 
network. Finally Pearson correlation is used for network 
construction. In the fourth step, the constructed gene 
co-expression network is analyzed using structural and 
topological properties of the network such as degree cen-
trality, closeness centrality, betweenness centrality, and 
eigenvector centrality. A set theory is applied in which 
the operations such as intersection, union, and difference 
are performed for the identification of the most influen-
tial genes associated with GBM progression. The detail 
method is shown in Fig. 1.

Construction of the gene co‑expression network
A set of co-expressed genes produces proteins. The cor-
relation among the genes expressed in different biological 
conditions is captured by gene co-expression networks 
[23]. It is represented as an undirected graph G = (V, 
E) where the V represents genes, E represents the edge 

Fig. 1 Workflow of the methodology used for identification of genetic biomarker. a Data pre-processing steps. b Survival analysis. c Gene 
co-expression network construction steps. d Gene co-expression network analysis
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connecting two genes that are significantly co-expressed. 
An edge connecting a pair of nodes indicates that the 
corresponding genes have significantly similar expres-
sion patterns, which in turn indicate that genes are active 
under the same biological condition. The gene co-expres-
sion network is shown in Fig. 2 which consists of 6 genes 
(G1, G2, …, G6). The connection between genes shows 
that they have similar expression patterns which mean 
that they have a high correlation (above the threshold). 
Co-expressed genes are very important from the bio-
logical point of view as they are controlled by the same 
transcriptional regulatory program, they show functional 
relations or they are members of the same pathway or 
protein complex.

Many methods are developed for constructing gene 
co-expression networks [24, 25], which basically follow 
a two-step approach. In the first step, for every pair of 
genes, a similarity score is calculated using an appro-
priate co-expression measure. Then, a pair of genes is 
linked by an edge in the network having correlation 
scores more than the selected threshold which shows 
that the gene pair has a significant co-expression rela-
tionship. For developing gene co-expression network, 
matrix form is used to provide input. The m × n matrix 
represents genes and n samples. A stepwise process 
of gene co-expression network construction is shown 
in Table  1. We have shown this process on top five 
genes out of 156 genes ( having p value < 0.01) obtained 
through survival analysis in order to simplify the net-
work construction process. The same set of steps is 
followed for gene co-expression network construc-
tion with 156 genes. Step 1(a) shows survival outcome 
associated genes identified through cox regression 

analysis with their expression values. Correlation 
value (up to two decimal points) between every gene is 
presented in step 1(b) which is calculated using Pear-
son correlation measure. Network adjacency matrix 
is obtained as shown in step 1(c), based on arbitrary 
threshold value as 0.5. If the correlation value is above 
0.5, it is indicated by ‘1’ otherwise it is ‘0’. Figure  3 
shows constructed gene co-expression network based 
on adjacency matrix of step 1(c). Value “1” in the adja-
cency matrix represents link (correlation) between two 
nodes (genes) and “0” represents absence of link which 
indicates that there is no significant correlation exist 
between pair of genes. For better visualization, subset 
of dataset is selected (i.e., 25 genes out of 156 survival 
outcome associated genes) for representation gene co-
expression network [26, 27].

Overall analysis
There are different network-based measures on the 
basis of which gene co-expression network can be ana-
lyzed [28]. Centrality measures are an important tool 
in social and complex network analysis to quantify the 
eminence of nodes. A centrality measure is an estima-
tion of the structural importance of a node based on its 
location, connectivity, or any other structural property. 
Several measures are coined in literature. Among all, 
centrality measure is found to be important to identi-
fying most influential nodes depicting biomarker genes 
associated with progression of the disease from disease 
network.

Gene co-expression network constructed in the ear-
lier step is analyzed using different centrality meas-
ures. For the simplicity we have shown the network by 
considering top 25 genes (P_value), out of 156 genes 
identified in the previous steps. Figure  4a shows the 
initial network of genes and their correlation com-
puted through Pearson measure. Similarly the network 
is constructed using other two correlation meas-
ures which are Spearman and Kendall [29, 30]. There 
are various approaches used for analysis of gene co-
expression network. Topological properties are found 
useful in network analysis. Among all other measures 
centrality measures are important to apply on the net-
work to decide importance of the node within the net-
work. In this study, three centrality measures namely 
degree centrality, closeness centrality, betweenness 
centrality, and eigenvector centrality are applied on the 
gene co-expression network to determine each node’s 
(gene’s) significance in the disease network [31]. The 
graph visualization method is used to show the nodes 
with higher degree centrality value in red color and 
in varied size according to their respective degree 
centrality value in Fig.  4b. Similarly other centrality 

Fig. 2 Gene co-expression network comprising 6 genes 
and connection between genes indicates that they have significant 
correlation
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measures are applied independently on the each gene 
co-expression network constructed using three differ-
ent correlation criteria.

In a similar way, the overall analysis is performed 
on the network constructed using three measures: 
Pearson, Spearman, and Kendall. In all the networks, 
networks constructed using the Pearson correlation 

measures are found to be more appropriate to analyze 
further. All four centrality measures are applied on 
this network and the set of nodes that are satisfying all 
the four centrality measures are considered to be the 
most significant which are shown in a red color node 
in Fig. 5a.

Weighted analysis
Weighting is a statistical technique in which data-
sets are manipulated through calculations in order 
to bring them more in line with the population being 
studied [32]. It allows researchers to correct issues 
that occurred during data collection. For this rea-
son, weighting is also known as post-stratification, as 
it takes place after the sample has been selected. It is 
referred to as statistical adjustments that are made in 
order to improve the accuracy of the survey estimates 
[33]. In this study, we have performed a weighted anal-
ysis so as to verify the accuracy of the overall analysis 
performed in the earlier step.

To decide the importance of the node in the gene co-
expression network, we have applied four centrality 
measures which are degree centrality, closeness central-
ity, betweenness centrality, and eigenvector centrality 
[34]. Here weights are assigned to these centrality meas-
ures as per their significance in biological networks for 

Table 1 Gene co-expression network construction steps (a) five genes with their expression values (b) co-relation matrix showing 
correlation among five genes (c) network adjacency matrix where correlation above threshold (> 0.5) is presented as ‘1’, otherwise it is 
‘0’

(a) Genes 
with the expression 
values

Sample ID\Gene ID Gene expression values

cg25226014 (Gene 1) cg00176210 (Gene 2) cg04369341 (Gene 3) cg00936626 (Gene 4) cg01354473 (Gene 5)

TCGA.02.0047.01A 0.85 0.82 0.70 0.82 0.84

TCGA.02.0055.01A 0.57 0.69 0.17 0.89 0.56

TCGA.02.2483.01A 0.91 0.87 0.83 0.86 0.84

TCGA.02.2485.01A 0.91 0.90 0.41 0.90 0.75

TCGA.02.2486.01A 0.84 0.64 0.65 0.49 0.70

(b) Co-relation matrix Gene ID Correlation values

cg25226014 (Gene 1) cg00176210 (Gene 2) cg04369341 (Gene 3) cg00936626 (Gene 4) cg01354473 (Gene 5)

cg25226014 (Gene 1) 1.00 0.15 0.23 -0.01 0.06

cg00176210 (Gene 2) 0.15 1.00 0.55 0.54 0.42

cg04369341 (Gene 3) 0.23 0.55 1.00 0.50 0.51

cg00936626 (Gene 4) -0.01 0.54 0.50 1.00 0.30

cg01354473 (Gene 5) 0.06 0.42 0.51 0.30 1.00

(c) Network adjacency 
matrix

Gene ID Significant correlation indicated as ‘1’

cg25226014 (Gene 1) cg00176210 (Gene 2) cg04369341 (Gene 3) cg00936626 (Gene 4) cg01354473 (Gene 5)

cg25226014 (Gene 1) 1 0 0 0 0

cg00176210 (Gene 2) 0 1 1 1 0

cg04369341 (Gene 3) 0 1 1 1 1

cg00936626 (Gene 4) 0 1 1 1 0

cg01354473 (Gene 5) 0 0 1 0 1

Fig. 3 Gene co-expression network based on adjacency matrix 
shown in Table 1(c)
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Fig. 4 Gene co-expression network analysis using degree centrality. a Gene co-expression network. b Top 10 nodes with high degree centrality are 
shown with red color and size of those nodes varies as per the degree centrality value
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most influential node identification. Degree centrality is 
assigned a weight of 0.6, Betweenness centrality is assigned 
with a weight value of 0.3 and closeness centrality is allo-
cated a weight of 0.2, and eigenvector centrality is assigned 
0.1 weights. These weights are assigned arbitrarily so as to 
make a total weight of node is 1. This weighted network is 
shown in Fig. 5b.

Overall analysis and weighted analysis performed on 
the network constructed considering Pearson correlation 

criteria shown in Fig.  5. In the network, nodes high-
lighted in red color indicate nodes satisfying all the four 
centrality measures so they are inferred as the most influ-
ential nodes in the disease network.

We have used well known statistical software ‘R’ for 
survival analysis, gene co-expression network construc-
tion, and analysis from https:// cran.r- proje ct. org/ web/ 
packa ge to identify genetic biomarkers associated with 
GBM.

Fig. 5 Gene co-expression network analysis using centrality measures, nodes shown in red color satisfies all four centrality criteria’s which signifies 
most influential genes. a Overall analysis. b Weighted analysis

https://cran.r-project.org/web/package
https://cran.r-project.org/web/package
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Results and discussion
Gene co-expression networks are constructed from 
survival outcome associated genes of DNA methyla-
tion dataset by considering three correlation measures 
which are Pearson, Spearman, and Kendall separately. 
The network constructed using the Pearson correla-
tion measure is found stable and considered for fur-
ther analysis. From these networks, different centrality 
measures like degree, betweenness, closeness, and 
eigenvector are applied to this constructed network to 
analyze and identify the most important nodes (genes). 
Among the top 20 nodes identified after applying each 
centrality measure independently, a final network is 
constructed in R as shown in Fig.  5. Using visualiza-
tion methods a network is constructed to significantly 
represent important genes satisfying all the central-
ity criteria. Most influential genes are highlighted in 
the red color node; those can be predicted as the most 
influential genes with respect to the faster progression 
of the GBM as shown in Fig.  5a. A weighted analysis 
is carried out to verify the importance of the centrality 
measure in the progression of the disease [35]. An arbi-
trarily weights are assigned to each centrality measure 
and accordingly, the network is constructed using color 
code to highlight the most influential node in red color 
shown in Fig. 5b.

For each gene co-expression network, top 20 nodes 
are identified satisfying each centrality criteria sepa-
rately and then the nodes which are found common that 
is satisfying all the centrality measures are extracted. In 
these ways, nodes representing genes SEMA3B, APS, 
SLC44A2, MARK2, PITPNM2, SFRP1, PRLH, DIP2C, 
CTSZ, and KRTAP4.2 are found to be a most influential 
node (highlighted in red color) and presented as a genetic 
biomarker associated with faster progression of the 
GBM. Developed code is uploaded in the GitHub reposi-
tory with the link https:// github. com/ redek arsee ma2021/ 
imp- genes.

These 10 influential genes are further analysis to find 
their effect on the progression of the disease by perform-
ing univariate analysis in R. The result is documented in 
the Table 2. Hazard ratio (HR) of the two genes SLC44A2 
and KRTAP4.2 is greater than 1 which indicates that 
these genes are positively associated with the progres-
sion that means higher expression values of these genes 
are linked with the faster progression (earlier death). 
Whereas lower expression values of the genes named 
SEMA3B, APS, MARK2, PITPNM2, SFRP1, PRLH, 
DIP2C, and CTSZ are associated with the faster pro-
gression of the GBM as their hazard ratio is less than 1. 
Kaplan–Meier curve also shows the similar pattern and 

there is significant difference is observed between higher 
and lower threshold as shown in Fig. 6. These threshold 
values are computed by constructing Classification and 
Regression Tree (CART) [36].

Survival analysis of key genes
Kaplan–Meier survival analysis indicating overall sur-
vival comparison of the key genes is conducted. K-M 
curves of genes SLC44A2 and KRTAP4.2 shows that 
higher expression values of these genes are linked with 
faster progression of GBM as shown in Fig. 6i, j and lower 
expression values of genes SEMA3B, APS, MARK2, PIT-
PNM2, SFRP1, PRLH, DIP2C, and CTSZ are associated 
with faster progression shown in Fig. 6a–h. Their cut-off 
values obtained through CART analysis is also recorded 
in K-M plots.

Conclusion
A methodology is proposed to construct the gene co-
expression network using Pearson correlation measure 
and then to analyze it using topological properties of 
the network, based on centrality measures. We have 
used the graph theory approach to identify most influ-
ential nodes representing key genes associated with 
the progression of the Glioblastoma multiforme. This 
analysis is advantageous to find genetic biomark-
ers associated with the progression of GBM which in 
turns linked with earlier death of GBM patient. These 
identified potential genes SEMA3B, APS, SLC44A2, 
MARK2, PITPNM2, SFRP1, PRLH, DIP2C, CTSZ, 
and KRTAP4.2 are analyzed to find their effect on the 
progression of the GBM. The survival analysis of these 
potential biomarkers is carried out to realize its cor-
relation with the progression of the disease. Higher 
expression values of SLC44A2 and KRTAP4.2 are 

Table 2 Univariate analysis of the key genes associated with 
GBM progression

Probe ID Gene HR [95% LCL, 95%UCL] P value

cg08097657 SEMA3B 0.017 [0.001, 0.278] 0.004

cg16880396 APS 0.038 [0.004, 0.350] 0.003

cg21663431 SLC44A2 6.867 [1.759, 26.81] 0.005

cg17998964 MARK2 0.113 [0.024, 0.527] 0.005

cg08176694 PITPNM2 0.049 [0.007, 0.340] 0.002

cg06166767 SFRP1 0.117 [0.028, 0.488] 0.003

cg26427308 PRLH 0.001 [0.000, 0.177] 0.007

cg00025991 DIP2C 0.010 [0.000, 0.233] 0.004

cg23679724 CTSZ 0.007 [0.000, 0.203] 0.004

cg23205633 KRTAP4.2 7.057 [1.811, 27.51] 0.005

https://github.com/redekarseema2021/imp-genes
https://github.com/redekarseema2021/imp-genes
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Fig. 6 Kaplan–Meier curves indicating overall survival comparison of key genes at their threshold values. a Overall survival: SEMA3B. b Overall 
survival: APS. c Overall survival: MARK2. d Overall survival: PITPNM2. e Overall survival: SFRP1. f Overall survival: PRLH. g Overall survival: DIP2C. h 
Overall survival: CTSZ. i Overall survival: SLC44A2. j Overall survival: KRTAP4.2
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linked with the progression and lower expression val-
ues of SEMA3B, APS, MARK2, PITPNM2, SFRP1, 
PRLH, DIP2C, and CTSZ genes are linked with the 
progression. The expression levels of these identified 
genes can be accelerated or decelerated to control the 
progression of the disease as well as to tailor appropri-
ate cancer therapy.
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