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Abstract 

Background  Breast cancer is the most common tumor among females globally. Its prevalence is growing 
around the world, and it is alleged to be the leading cause of cancer death. Approved anti-breast cancer drugs display 
several side effects and resistance during the early treatment stage. Hence, there is a need for the development 
of more effective and safer drugs. This research was aimed at designing more potent quinazolin-4(3H)-one molecules 
as breast cancer inhibitors using a ligand-based design approach, studying their modes of interaction with the target 
enzyme using molecular docking simulation, and predicting their pharmacological properties.

Methods  The QSAR model was developed using a series of quinazoline-4(3H)-one derivatives by utilizing Material 
Studio v8.0 software and validated both internally and externally. Applicability domain virtual screening was utilized 
in selecting the template molecule, which was structurally modified to design more potent molecules. The inhibi-
tive capacities of the design molecules were predicted using the developed model. Furthermore, molecular docking 
was performed with the EGFR target active site residues, which were obtained from the protein data bank online 
server (PDB ID: 2ITO) using Molegro Virtual Docker (MVD) software. SwissADME and pkCSM online sites were utilized 
in predicting the pharmacological properties of the designed molecules.

Results  Four QSAR models were generated, and the first model was selected due to its excellent internal 
and external statistical parameters as follows: R2 = 0.919, R2

adj = 0.898, Q2
cv = 0.819, and R2

pred = 0.7907. The robust-
ness of the model was also confirmed by the result of the Y-scrambling test performed with cR2p = 0.7049. The 
selected model was employed to design seven molecules, with compound 4 (pIC50 = 5.18) adopted as the template. 
All the designed compounds exhibit better activities ranging from pIC50 = 5.43 to 5.91 compared to the template 
and Doruxybucin (pIC50 = 5.35). The results of molecular docking revealed better binding with the EGFR target com-
pared with the template and Doruxybucin. The designed compounds exhibit encouraging therapeutic applicability, 
as evidenced by the findings of pharmacological property prediction.

Conclusions  The designed derivatives could be utilized as novel anti-breast cancer agents.
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Background
Cancer is one of the leading causes of casualties in the 
world, and as a result, there is an urgent need to design 
new and effective remedies. Presently, chemotherapy 
combined with unique working mechanisms is one of the 
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techniques that are being embraced for most cancer ther-
apies [1]. Breast cancer is observed in humans and other 
mammals; it originates from the breast tissue, either 
from the milk ducts, known as ductal carcinomas, or 
from the lobules, which supply milk to the ducts, called 
lobular carcinomas [2]. The majority of human breast 
cancer cases are in women, even though it is also rarely 
observed in men [3]. Breast cancer is the most prominent 
tumor among females globally. Its prevalence is grow-
ing around the world, and it is claimed to be the leading 
cause of cancer death, according to the American Cancer 
Society. The projected new cases of breast cancer in the 
USA (2014) are 235,030; 232,670 of them are estimated 
to be female, and the other 2360 are male. Additionally, 
the estimated number of breast cancer deaths is 40,430 
for the same year [4].

Quinazolines play a key role in the medicinal chemistry 
arena: they are of specific attention and are considered 
favorable skeletons in the exploration of new bioactive 
agents because of their pronounced pharmacological 
activities such as anti-inflammatory [5], antimicrobial [6], 
antihypertensive [7], anticonvulsant [8], cholinesterase 
inhibitors [9], anticancer [10], and anti-diabetic [11].

The primary aim of anti-cancer drugs is to neutral-
ize cancer cells without inflicting unfavorable damage 
on other normal cells. Regrettably, currently existing 
anti-cancer drugs result in several side effects, such as 
endometrial cancer and drug resistance. Hence, there 
is a severe need to discover and design novel anticancer 
agents with improved tumor selectivity, safety, and pro-
ficiency [12]. Computational methods are frequently uti-
lized in most modern drug discovery approaches. These 
methods are very precise, faster, and cost-effective. The 
computational approach to drug design is essentially 
divided into two approaches: the ligand-based (LB) and 
structure-based (SB) processes. Quantitative structure–
activity relationship (QSAR) is one of the computational 
approaches for drug discovery [13]. The generation of a 
robust QSAR model for the prediction of biological activ-
ity of a compound prior to its synthesis is paramount 
because a successful QSAR model enables the establish-
ment of relationships between the structural features 
and biological activity of any class of compounds, as 
well as providing researchers with a profound investiga-
tion of the lead molecules to be utilized for supplemen-
tary research [14]. Another important aspect in the area 
of drug discovery is molecular docking, which aids in 
understanding the nature of ligand-receptor interaction, 
predicting the binding capability of amino acid residues 
to specific groups on the target receptor, and disclosing 
the strength of the interaction [15, 16].

This research was aimed at designing more potent 
quinazolin-4(3H)-one molecules as breast cancer 

inhibitors using a ligand-based design approach, studying 
their modes of interaction with the target enzyme using 
molecular docking simulation, and predicting their phar-
macological properties.

Methods
Data set retrieval, geometry optimization, and descriptor 
calculations
A series of compounds containing thirty-five (35) 
quinazolin-4-one derivatives were obtained from the lit-
erature [17, 18]. Their biological activities (IC50) in µM 
were represented by the –log IC50. 2D structures of the 
derivatives were sketched using Perkin-Elmer Chem-
Draw software and then transformed to 3D format using 
Spartan v14.0 software. Geometry optimization of the 
molecules was performed on the Spartan interface using 
Density Functional Theory (DFT) quantum mechanical 
calculations with B3LYP/ 631-G* basis set. Geometry 
optimization was performed to find the most stable and 
least energetic conformer of the molecules [16]. The geo-
metrically optimized structure of the molecules was kept 
in a single folder in Spatial Document File (SDF) format 
and then transported to the PADEL descriptor toolkit for 
the computation of the essential molecular descriptors 
that are responsible for the anti-breast cancer activities of 
the molecules [19].

Data pretreatment and division
The calculated molecular descriptors of the compounds 
in the Excel sheet were pretreated manually and then 
using data pretreatment software to reduce redundant 
and irrelevant descriptors. The pretreated data was then 
separated into training and test sets using the Kennard-
Stone algorithm utilized in data division software. In this 
research work, the training set comprises 25 molecules, 
while the test set is made up of 10 molecules.

QSAR model building and validation
The training set molecules were utilized in the QSAR 
model generation and internal validations, while the 
test set molecules were utilized in the model’s external 
validation and predictive strength appraisal. The genetic 
function algorithm (GFA) combined with multi-linear 
regression (MLR) in Material Studio v8.0 was utilized 
for the feature selection of the relevant descriptors and 
model generation. GFA produces a population of models 
rather than a single model [20]. In QSAR modeling, MLR 
correlates the independent variables (selected descrip-
tors) with the dependent variables (experimental pIC50) 
[21]. The best QSAR model was identified and selected 
based on the following statistical metrics: correlation 
coefficient of the training set (R2training), adjusted cor-
relation coefficient (R2adj), cross-validation coefficient 
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(Q2cv), and correlation coefficient of the external test set 
(R2ext). The equations that defined the validation param-
eters are presented in Eqs. (1, 2, 3, and 4), respectively.

Where P is the independent variable’s number, N rep-
resents the size of the training set sample, and the experi-
mental, predicted, and mean activities of the training set 
samples are represented by Yexp, Ypred, and Ymtraining.

Y‑scrambling test
The Y-scrambling test was performed to ascertain the 
robustness of a model and also to confirm that a model 
was not obtained by chance correlation. In performing 
the Y-scrambling test, the experimental activities were 
reshuffled with the descriptors kept unchanged, and 
new QSAR models were generated for several trials. The 
newly developed QSAR models were anticipated to have 
low Q2 and R2 values. The statistical parameter for the 
Y-scrambling test is the coefficient of determination for 
the Y-scrambling test, cR2p (Eq. 5), and for a model to be 
reliable, its value must be greater than 0.5 [22].

cR2p is coefficient of determination for Y-scrambling, R is 
the coefficient of determination for Y-randomization and 
Rr is average ‘R’ of random models.

Applicability domain (AD)
The hypothetical space within a chemical boundary 
that comprises the model descriptors and the modeled 
response is referred to as the applicability domain (AD) 
of a QSAR model. It enables the extrapolation of uncer-
tainty in the detection of certain molecules based on the 
data set of molecules utilized in the model generation. 
The applicability domain aids in the detection of X-out-
liers from the training set and also discovers compounds 
that are outside the prescribed AD space [16]. Among 
the numerous approaches used to define the applicability 
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domain of a robust QSAR model is the leverage approach 
[16]. The leverages of each molecule in the data set are 
utilized in this approach, which permits the investigation 
of the position of a new molecule in the QSAR model. 
The leverage value of each compound is calculated using 
the below equation.

Where y indicates the vector descriptor of the referred 
sample and Y signifies the matrix of the descriptor 
obtained from the training set descriptor values. The 
threshold leverage (h*) was computed using Eq. 7 below:

M is the number of training set molecules, and Q is 
the number of independent variables (descriptors) used 
in developing the model. A plot of standardized residuals 
against the leverage values (h) of the compounds is called 
the William’s plot. When the leverage of a compound 
exceeds the threshold value (h*) and its residual value lies 
beyond the ± 3 defined space, it is presumed to have influ-
enced the performance of the model, and the compound 
may be eliminated from the domain [22]. Hence, leverage 
and standardized residuals were jointly used to charac-
terize and determine the applicability domain.

Docking studies
Ligand–protein molecular docking studies were per-
formed using Molegro Virtual Docker (MVD) software, 
as it yields better and more precise results compared to 
other docking software. All the ligands were prepared 
by optimization using DFT with the B3LYP/631G* basis 
set and then saved in the protein data bank (PDB) for-
mat. The EGFR target was retrieved from the protein 
data bank online site (http://​www.​rcsb.​org/​pdb/) with 
PDB ID: 2ITO and then prepared on the MVD work 
space by eliminating excess water molecules and the co-
crystallized ligand enveloped in the crystal structure. The 
docking results were determined based on the set scoring 
functions, such as the MolDock score and Re-rank score 
[23, 24]. Visualization of various intermolecular interac-
tions was performed by utilizing Discovery Studio v3.5 
software.

ADMET and drug‑likeness prediction
The ADMET properties of a compound are crucial in 
determining its therapeutic effectiveness [25, 26]. Swis-
sADME and pkCSM online tools were employed to 
assess the physicochemical properties, pharmacokinetics, 
and drug-like properties by utilizing the famous Lipin-
ski’s rule of five.
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YTY
)
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M
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Results
Result of QSAR studies
Four (4) QSAR models were developed using Material Stu-
dio v8.0 to offer an efficient prediction of the anti-breast 
cancer activities of the studied molecules. The mathemati-
cal expressions of the generated models are shown below:

Model 1

Model 2

pIC50 = −0.145346037 ∗ ATSC5p + 1.506479874

∗GATS7e− 0.033543143 ∗ VR2Dzs

+ 0.369945024 ∗ ZMIC3− 0.334069472

∗ ZMIC4 + 2.221651

pIC50 = −0.157468042 ∗ ATSC5p + 1.874776212

∗ GATS7e− 0.053075390 ∗ VR2_Dzs

∗ + 0.262551901 ∗ ZMIC3− 0.232183036

∗ ∗ZMIC5 + 2.475692

Model 3

Model 4

Results of internal and external validations 
of the developed models
The results of internal and external validations of the 
developed QSAR models are presented in Tables  1 
and 2 and were found to have passed the minimum 
requirements of an acceptable QSAR model [27]. How-
ever, model 1 with the best internal validation metrics 

pIC50 = −0.143572361 ∗ ATSC5p + 1.644069923

∗GATS7e− 0.036310109 ∗ ZMIC2 + 0.416554236

∗ ∗ZMIC3− 0.330830121 ∗ ZMIC4 + 1.713922

pIC50 = −0.146348290 ∗ ATSC5p + 1.596869177

∗GATS7e− 0.000590607 ∗ VR1_Dzs

∗ + 0.359099432 ∗ ZMIC3− 0.314703957

∗ ∗ZMIC4 + 1.744154

Table 1  Minimum acceptable values of the developed QSAR models

Symbol Definition Threshold value Model 1 Model 2 Model 3 Model 4

R2 Correlation coefficient of the training set  ≥ 0.6 0.919473 0.904997 0.9049 0.903554

R2
adj Adjusted R2  ≥ 0.6 0.898281 0.879996 0.879874 0.878174

Q2
CV Cross validation coefficient  ≥ 0.5 0.819201 0.819222 0.787238 0.799009

R2—Q2
cv Difference between R2 and Q2

cv  ≤ 0.3 0.10072 0.085755 0.117662 0.104545

P(95%) Confidence interval at 95% confidence level  < 0.05 0.097933 0.106372 0.106426 0.107177

Table 2  External validation of the selected model

ID ATSC5p GATS7e VR2_Dzs ZMIC3 ZMIC4 Yexp Ypred (Yexp – Ypred) (Yexp – Ymtrng) (Yexp – Ypred)2 (Yexp – Ymtrng)2

10 3.158387 0.832666 13.67159 27.5155 25.91358 3.93 4.08 -0.150 -0.660 0.020 0.435

16 -1.72771 0.983945 22.10245 38.34185 36.4481 4.95 5.23 -0.280 0.360 0.080 0.129

18 0.415765 1.010939 13.98274 37.49586 36.12086 5.22 5.02 0.190 0.630 0.040 0.397

19 -1.61582 0.867801 14.44765 36.7727 35.8813 5.04 4.89 0.140 0.450 0.020 0.203

25 4.038224 1.120313 11.92254 38.35934 37.15472 5.04 4.70 0.340 0.450 0.110 0.203

30 -1.69198 0.400794 14.24406 29.02303 27.59978 4.30 4.11 0.190 -0.290 0.030 0.084

32 -2.67056 0.354307 19.20165 30.28259 28.95225 4.00 4.03 -0.030 -0.590 0.001 0.348

35 -2.74816 0.40653 14.33373 30.44555 29.00592 4.30 4.33 -0.030 -0.290 0.001 0.084

36 -3.1579 0.379647 13.6011 31.80867 30.41389 4.00 4.41 -0.410 -0.590 0.165 0.348

37 -0.91779 0.490773 13.44224 30.23823 28.84345 4.30 4.19 0.100 -0.290 0.011 0.084

Sum 0.484 2.315

R2pred = 1−
∑

(Yexp−Ypred)2
∑

(Yexp−Ymtrng)2
= 1− 0.484

2.315

R2pred = 0.791
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(Table 1) was selected for the external validation studies 
using the test set molecules. The activities of the test set 
molecules were predicted using the model, and Eq. 4 was 
utilized to compute the predicted correlation coefficient 
(R2

pred) in order to access the selected model’s predic-
tive capacity. For the sake of replication, the descriptor 
values, the experimental and predicted activities of the 
test set molecules, and the step-by-step calculations of 
the external prediction correlation coefficient (R2

pred) are 
presented in Table  2. The structure of the quinazoline-
4-one molecules, their experimental and predicted activi-
ties are presented in Table 3. The experimental activities 
(Figs. 1 and 2) were plotted against the predicted activi-
ties as presented in Fig. 3, while the plot of experimental 
activities against the standardized residuals of the mol-
ecules are presented in Fig. 5.

Result of Y‑scrambling test
The results of Y-scrambling test, performed to ascertain 
the robustness of a QSAR model as well as ensuring that 
the model was not obtained accidentally was presented in 
Table 4.

Results of descriptor mean effect and William’s plot 
of the selected model
The result of the model descriptors mean effect values 
is presented in a chart format in Fig. 3, while the model 
William’s plot is presented in Fig. 4.

Ligand‑based drug design
The structures of compound 4 and the template utilized 
for the ligand-based design process are presented in 
Figs.  5, and 6. Seven compounds were designed via the 
structural adjustment of the template by the addition of 
active groups and fragments at the specified X, and Y 
positions. The inhibitive capacities of the molecules were 
predicted using the selected model. 2D structures and 
the predicted activities (pIC50) of the designed molecules 
were presented in Table 5.

Results of docking studies
The docking scores of the designed molecules, and resid-
ual interactions are presented in Table 6, while Figs. 9 - 
15 represent the 2D and 3D interactions of the designed 
molecules with the EGFR target active site residues.

Results of pharmacokinetics and ADMET properties studies
Table  7 presents the results of drug-like check of the 
designed compounds by utilizing the famous rule of 
five proposed by Lipinski and co-workers, which was 
obtained using the SwissADME online server [28, 29]. 

While Table  8 presents the results of ADMET profiling 
obtained using the pkCSM online site.

Discussion
The four developed QSAR models passed the minimum 
requirement for an acceptable model, as illustrated 
by their statistical parameters (Table  1). Model 1 was 
selected as the most relevant model as it has the best sta-
tistical significance. Its internal R2 value close to unity is 
an indicator that the selected model clarified an exces-
sive proportion of the independent variable (molecular 
descriptor), sufficiently enough for a powerful QSAR 
model. A value of 0.919 suggests that 91.9% of the dispar-
ity lies in the residual, suggesting a very good model [23, 
30]. Additionally, adjusted R2 has a very high value that is 
close to the internal R2 value for the selected model. This 
affirmed that the model possessed exceptional descrip-
tive power for the response variables it contained and 
also illustrated the actual impact of the descriptors on the 
anti-cancer activities of the compounds. Additionally, to 
further confirm the robustness of the selected model, it 
was validated externally (Table 2), and the external vali-
dation correlation coefficient (R2

pred) was found to be 
0.791. This value exceeds the minimum recommended 
value of ≥ 0.6 for an acceptable model [16]. A high exter-
nal prediction correlation coefficient (R2

pred) indicates 
that the model can effectively predict the activities of new 
molecules. Hence, we can confidently conclude that the 
selected model will predict the anti-breast cancer activ-
ity of the quinazolin-4-one molecules accurately. Moreo-
ver, the selected model was utilized to predict the activity 
of both the training and test sets; the result is shown 
in Table  3. The experimental pIC50 of both the training 
and test sets were plotted against their predicted activi-
ties (Fig. 1), and a plot of experimental activities for the 
MCF-7 cell line against their residuals was presented in 
Fig. 2.

Y‑scrambling test
The result of the Y-scrambling test is shown in Table 4. 
The coefficient of determination for the Y-scrambling 
test cR2p was found to be 0.7049 for this test, which sug-
gested that the model was not obtained by chance corre-
lation and that it is powerful enough for the prediction of 
anti-breast cancer activities of molecules [20].

Mean effect
The impact and contribution of each descriptor in a 
QSAR model were measured by computing its mean 
effect value (MF) [25]. The mean effect values of the 
selected descriptors are depicted in Fig.  3, respectively. 
The magnitude and signal of a descriptor are related to 
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Table 3  Structures, experimental, predicted activities and residuals of Quinazolin-4-one derivatives against MCF-7 breast cancer cell 
line

S/NO STRU​CTU​RE Exp pIC50 Pred Pic50 Residual

1 3.90 4.07 -0.17

2 3.95 3.83 0.12

3 4.80 4.67 0.13

4 5.18 5.19 -0.01

5 4.25 4.36 -0.11

6 4.36 4.34 0.02
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Table 3  (continued)

S/NO STRU​CTU​RE Exp pIC50 Pred Pic50 Residual

7 4.53 4.55 -0.02

8 4.51 4.43 0.08

9a 3.93 4.08 -0.15

10 3.94 4.05 -0.11

11 4.60 4.72 -0.12
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Table 3  (continued)

S/NO STRU​CTU​RE Exp pIC50 Pred Pic50 Residual

12 4.80 4.66 0.14

13 4.52 4.47 0.05

14 4.20 4.31 -0.11

15a 4.95 5.23 -0.28

16 4.79 4.94 -0.15
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Table 3  (continued)

S/NO STRU​CTU​RE Exp pIC50 Pred Pic50 Residual

17a 5.22 5.02 0.20

18a 5.04 4.89 0.15

19 5.52 5.34 0.18

20 4.92 4.93 -0.01



Page 10 of 26Abdullahi et al. Journal of the Egyptian National Cancer Institute           (2023) 35:24 

Table 3  (continued)

S/NO STRU​CTU​RE Exp pIC50 Pred Pic50 Residual

21 4.92 4.90 0.02

22 4.63 4.56 0.07

23 4.85 4.99 -0.14

24a 5.04 4.70 0.34
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Table 3  (continued)

S/NO STRU​CTU​RE Exp pIC50 Pred Pic50 Residual

25 4.95 4.91 0.04

26 4.74 4.68 0.06

27 4.63 4.76 -0.05

28 4.65 4.68 -0.03

29a 4.30 4.11 0.19
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Table 3  (continued)

S/NO STRU​CTU​RE Exp pIC50 Pred Pic50 Residual

30 4.30 4.09 0.21

31a 4.00 4.03 -0.03

32 4.30 4.30 0.00

33a 4.30 4.33 -0.03

34a 4.00 4.41 -0.41

35a 4.30 4.19 0.11

DOROXUBUCIN 5.35
a Test set compounds
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the biological activity of a compound [16]. A descriptor 
with a negative sign illustrates that the biological activ-
ity of a compound decreases by increasing its value, 
while a positive signal suggests that biological activ-
ity increases by increasing its value. In this study, the 
most important molecular descriptor is ZMIC3, a 2D 
class descriptor defined as a Z-modified information 
content index (neighborhood symmetry of 3-order). It 
has a mean effect value of 4.975, which suggests that an 
increase in its value affects the anti-cancer activities of 
the compounds positively. The least important descrip-
tor is ZMIC4, another 2D class descriptor Z-modified 
information content index (neighborhood symmetry of 
4-order); it has a mean effect value of -4.309, suggest-
ing that the anti-cancer activities of the compounds can 
only be affected positively when its value is decreased. 
Another important descriptor that appears in the model 
is GATS7e, which is a 2D class autocorrelation descrip-
tor defined as Geary autocorrelation—lag 7/ weighted 
by Sanderson electro negativities. Its positive mean 
effect value (0.624) suggested that the increasing bio-
logical activity of the compounds is related to the rise in 
the value of this descriptor. The value of this descriptor 
is increased by introducing groups with electronegative 
atoms to the main scaffold structure of the compound. 
Other descriptors that appear in the model are ATSC5p 
and VR2_Dzs, their negative mean effect values suggest 
that they are negatively related to the biological activities 
of the compounds. A chart showing the mean effect val-
ues of the descriptors that appear in the model is shown 
in Fig. 3.

William’s plot of the selected model
The Williams plot for the model selected is shown in 
Fig.  4. The threshold leverage was found to be 0.72, 
and as such, only five compounds from the test set data 
lie beyond the defined AD (i.e., having h > h*). These 
compounds are labeled as influentials since the model 
performance is affected by them, but they may not be 
regarded as structural outliers since their residual val-
ues lie within the ± 3 region, which covers up to 99% of 
the uniformly distributed data [25].

Ligand‑based drug design
An in-silico screening approach was used for the design 
of novel quinazolin-4-ones with pIC50 activities against 
the MCF-7 cell line based on the selected QSAR model. 
Compound 4 from the training set samples was selected 
as a template for the design due to its high inhibitory 
activity (pIC50 = 5.18) and low standardized residual 
value (-0.01), which are within the defined domain of 
applicability. The structure of compound 4 and the 
template used for the design are shown in Figs.  5 and 
6, respectively. The adjustment of the compound was 
done so that its synthesis experimentally would be 
easy and feasible. Virtual screening was applied by the 
addition and replacement of several entities at X and 
Y positions, as shown in Figs.  5 and 6. Seven (7) new 
potent compounds with improved activities which 
ranged from pIC50 = 5.43 to 5.91 compared to the tem-
plate and Doruxybucin (pIC50 = 5.35) were designed. 
The structures of the designed compounds and their 
predicted activities are shown in Table 5.

Result of Molecular docking studies
The designed quinazoline-4-one derivatives were 
docked onto the active site of the EGFR receptor to 
explore the nature of interactions between the ligand 
and the target receptor. The template and the refer-
ence drug (DOX) were also docked on the same bind-
ing site to validate the docking studies. All the designed 
compounds were found to have better docking scores 
which ranged from -137.652 to -162.572 MolDock 
score and -53.2419 to -127.635 Re-rank score com-
pared to the template (MolDock score = -133.711, Re-
rank score = -103.969) and Doruxybucin (MolDock 
score = -104.364, Re-rank score = .-29.958). The higher 
binding affinities of the designed compounds disclosed 
that they binds more effectively with the EGFR target 
compared to Doruxybucin. The 3D structures of the 
template and prepared EGFR receptor are shown in 
Figures. 7 and 8, respectively, while the docking scores 

Table 4  Result of Y-scrambling test for the selected model

Model R R2 Q2

Original 0.891074 0.794014 0.66778

Random 1 0.52001 0.270411 -0.3075

Random 2 0.301356 0.090816 -0.32506

Random 3 0.434349 0.188659 -0.4247

Random 4 0.361105 0.130397 -0.34535

Random 5 0.149213 0.022265 -0.50583

Random 6 0.555151 0.308193 -0.03051

Random 7 0.308871 0.095401 -0.33896

Random 8 0.475642 0.226235 -0.10752

Random 9 0.530334 0.281254 -0.11649

Random 10 0.465513 0.216702 -0.59389

Random Models Parameters

Average r: 0.410154

Average r2: 0.183033

Average Q2: -0.30958

cRp2: 0.7049
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Table 5  Structure and pIC50 of the designed compounds

S/no Structure pIC50

1 5.69

2 5.91

3 5.76

4 5.43
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and various kinds of amino acid interactions between 
the designed quinazoline-4-ones and the active site of 
the EGFR receptor are presented in Table 6.

Interpretation of the docking results
Designed analogue 7 had the best docking scores (Mol-
Dock score = -162.572, Rerank score = -127.635), and it is 
found to have interacted with the active site of the EGFR 
receptor through two (2) conventional hydrogen bonds, 
a single Pi-cationic hydrogen bond, a single electro-
static Pi-anion interaction, a hydrophobic Pi-Sigma and 
Pi-Pi T-shaped interaction, and several hydrophobic Pi-
Alkyl interactions. GLY247 forms a conventional hydro-
gen bond with the hydrogen atom of the ortho-hydroxyl 
group attached to the benzene ring; another conventional 
hydrogen bond is between the amino group hydrogen 
atom attached to the furyl group. The β-position ben-
zene ring is intercalated in space and forms a Pi-cationic 

hydrogen bond with LYS745 residue, an electrostatic 
Pi-anionic interaction with GLU762 residue, and hydro-
phobic Pi-Sigma and Pi-Pi T-shaped interactions with 
PHE723. LEU718, VAL726, ALA743, LEU844, LYS745, 
VAL726, LEU747, and ILE759 residues form pi-alkyl 
interactions with the ligand. 3D and 2D interactions of 
designed molecule 7 in the active site of the EGFR recep-
tor are presented in Fig. 9.

Designed compound 6 has the second-best dock-
ing score (MolDock score = -161.369, Rerank 
score = -117.521). It is observed to have interacted with 
the active site of the EGFR receptor via conventional and 
pi-cationic hydrogen bonds, two electrostatic pi-anion 
interactions, hydrophobic pi-sigma and pi-pi T-shaped 
interactions, two alkyl and several pi-alkyl interactions. 
GLY724 forms a conventional hydrogen bond with a 
hydrogen atom attached to the ortho-hydroxyl group of 
the β-Benzene ring, which is further intercalated in space 

Table 5  (continued)

S/no Structure pIC50

5 5.59

6 5.63

7 5.49
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Table 6  Docking scores and several Amino acid residues interactions between the designed compounds and the active sites of the 
EGFR receptor (pdb id = 2ITO)

S/no MolDock score Rerank score amino acid residues Category Type of interactions

1 -137.652 -100.296 LYS745
ARG841
ARG841
ASP837
VAL726
LYS745
PRO877
LYS745
LEU747
ILE759
ALA722

Electrostatic
Electrostatic
Electrostatic
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Pi-Cation
Pi-Cation
Pi-Cation
Pi-Anion
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

2 -157.482 -119.221 GLY857
GLY857
GLU762
ARG841
GLU758
ASP837
PHE723
ALA755
LEU747
ILE759
PRO877

Hydrogen bond
Hydrogen bond
Hydrogen bond
Electrostatic
Electrostatic
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Carbon-Hydrogen
Carbon-Hydrogen
Pi-Cation
Pi-anion
Pi-anion
Pi-Pi stacked
Pi-alkyl
Pi-alkyl
Pi-alkyl
Pi-alkyl

3 -153.96 -105.477 THR854
THR790
GLY796
ASP800
LYS745
MET766
MET766
CYS797
LYS745
MET766
LEU788
LEU718
LYS728
LEU792
VAL726
VAL726
ALA743
LYS745

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Electrostatic
Other
Other
Other
Hydrophobic
Hydrophobic Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Carbon-Hydrogen
Carbon-Hydrogen
Carbon-Hydrogen
Pi-Cation
Pi-Sulfur
Pi-Sulfur
Pi-Sulfur
Alkyl
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

4 -156.961 -53.2419 LYS745
MET793
CYS775
MET793
LEU844
VAL726
LYS745
LEU718
ALA743
MET793
LEU844

Hydrogen bond
Hydrogen bond
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Pi-Donor
Alkyl
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
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Table 6  (continued)

S/no MolDock score Rerank score amino acid residues Category Type of interactions

5 -150.758 -84.7712 LYS745
SER719
ASP800
ASP855
LEU718
LEU718
VAL726
VAL726
ALA743
LYS745
MET766
LEU788
LEU844
CYS797
LEU718

Hydrogen bond
Hydrogen bond
Electrostatic
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Carbon-Hydrogen
Pi-Anion
Pi-Anion
Pi-Sigma
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

6 -161.369 -117.521 GLY724
LYS745
GLU762
ASP855
PHE723
PHE723
ALA755
LEU747
ALA743
LEU844
LEU718
LEU792
VAL726
LYS745
LEU747
ILE759

Hydrogen bond
Hydrogen bond
Electrostatic
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Pi-Cation
Pi-Anion
Pi-Anion
Pi-Sigma
Pi-Pi T-shaped
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

7 -162.572 -127.635 GLY724
ALA755
LYS745
GLU762
PHE723
PHE723
ALA743
LEU844
LEU718
ALA743
VAL726
LYS745
VAL726
LEU747
ILE759

Hydrogen bond
Hydrogen bond
Hydrogen bond
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Conventional
Pi-Cation
Pi-Anion
Pi-Sigma
Pi-Pi T-shaped
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

Template -133.711 -103.969 LYS745
ASN842
ARG841
ASP855
ARG841
VAL726
ALA743
LYS745
LEU788
LEU844
ARG841
LEU718
VAL726

Hydrogen bond
Hydrogen bond
Hydrogen bond
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Conventional
Pi-Cation
Pi-Anion
Pi-Sigma
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
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to form a pi-cationic hydrogen bond with LYS745 and 
an electrostatic pi-anionic interaction with the GLU762 
residue. Furyl ring moiety is intercalated in space and 
forms an electrostatic Pi-Anion interaction with ASP855. 
PHE723 forms hydrophobic Pi-sigma and Pi-Pi T-shaped 
interactions with the β-Benzene ring moiety. ALA755 
and LEU747 form alkyl interactions with the chlo-
rine atom attached to the furyl ring. ALA743, LEU844, 
LEU718, LEU792, VAL726, LYS745, LEU747, and ILE759 
form pi-alkyl interactions with the compound. Fig.  10 

represents the 2D and 3D interactions of designed com-
pound 6 in the active site of the EGFR receptor.

Designed compound 2 also has the third best 
docking score (MolDock score = -157.482 Rerank 
score = -119.221) and was found to interact with the 
active pocket of the receptor via a conventional hydro-
gen bond, two carbon-hydrogen bonds, electrostatic 
Pi-cation and Pi-anion interactions, hydrophobic 
Pi-Pi stacked interactions, and Pi-alkyl interactions. 
Carbonyl oxygen attached to the phenyl ring forms 

Table 6  (continued)

S/no MolDock score Rerank score amino acid residues Category Type of interactions

DOX -104.364 -29.958 ASP855
PHE723
ALA755
GLU762
ASP837
ASP855
GLY724
LYS745
LYS745
GLU762
PHE723
ALA722
LYS745

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Electrostatic
Hydrogen bond
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic

Conventional
Conventional Conventional Con-
ventional Conventional Conven-
tional
Carbon-Hydrogen
Pi-Cation
Pi-Cation
Pi-Anion
Pi-Pi T-shaped
Pi-Alkyl
Pi-Alkyl

Table 7  Pharmacokinetic properties of the designed compounds

MW Molecular Weight, HBA Hydrogen Bond Acceptors, HBD Hydrogen Bond Donors, TPSA Topological Polar Surface Area, SA Synthetic Accessibility

S/no MW HBA HBD mlogP TPSA ABS SCORE SA Lipinski 
violation

1 518.95 5 1 4.01 85.33 0.55 3.81 1

2 500.5 6 1 2.48 98.47 0.55 3.91 1

3 518.95 5 1 3.74 85.33 0.55 3.74 1

4 518.95 5 1 4.01 85.33 0.55 3.82 1

5 518.95 5 1 4.01 85.33 0.55 3.83 1

6 534.95 6 1 2.94 98.47 0.55 3.92 1

7 515.52 6 2 1.96 124.49 0.55 4.06 1

Table 8  Predicted ADMET properties of the designed compounds

S/no Absorption
Intestinal 
(Human) 
Absorption

Distribution
LogBB LogPS

Metabolism 
Substrate Inhibitors
2D6 3A4 1A2 2C19 2C9 2D6 3A4

Excretion
Total clearance

Toxicity
AMES

1 97.183 -0.976 -1.532 NO YES YES NO NO NO YES 0.355 NO

2 100 -1.007 -1.809 NO YES YES YES YES NO YES 0.715 NO

3 98.517 -0.970 -1.353 NO YES NO NO NO NO YES 0.594 NO

4 96.265 -0.992 -1.577 NO YES YES NO NO NO YES 0.714 NO

5 97.718 -0.991 -1.529 NO YES YES NO NO NO YES 0.389 NO

6 100 -1.195 -1.698 NO YES NO YES YES NO YES 0.840 NO

7 100 -1.142 -1.948 NO YES NO YES YES NO YES 0.542 NO
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conventional and carbon-hydrogen bonds with 
GLY857; other carbon-hydrogen bonds are formed 
between the hydrogen atom (H17) of the furyl ring 
and GLU762. β-Benzene ring intercalated in space 
and forms an electrostatic Pi-cation interaction with 
ARG841 and a Pi-anion interaction with ASP837; other 
electrostatic Pi-anion interactions are between GLU758 
and quinazoline scaffold. PHE723 forms a hydrophobic 

Pi-Pi stack, while ALA755, LEU747, ILE759, and 
PRO877 form Pi-Alkyl interactions. 3D and 2D interac-
tions of compound 2 with the active sites of the EGFR 
receptor are shown in Fig. 11, respectively.

Designed compound 4 also has promising dock-
ing scores (MolDock score = -156.961, Rerank 
score = -53.2419). It is found to interact with the active 
site of the EGFR receptor via a single conventional 

Fig. 1  Plot of experimental pIC50 of the training and test sets against their predicted activities

Fig. 2  Plot of experimental activities of the training and test set against their residuals

Fig. 3  Mean effect values of the relevant descriptors
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hydrogen bond, two carbon-hydrogen bonds, three 
hydrophobic alkyls, and several pi-alkyl interactions. The 
oxygen atom of the ortho-hydroxyl group attached to 
the β-phenyl ring forms a conventional hydrogen bond 
with LYS745. MET793 forms double Pi-donor hydrogen 

bonds with the quinazoline scaffold. CYS775, MET793, 
and LEU844 form alkyl interactions, while VAL726, 
LYS745, LEU718, ALA743, MET793, and LEU844 resi-
dues form hydrophobic pi-alkyl interactions. Fig.  12 
shows the 2D and 3D interactions of designed compound 
4 in the active site of the EGFR receptor.

Fig. 4  William’s plot of the selected model

Fig. 5  Structure of compound 4

Fig. 6  Structure of the template used for the design

Fig. 7  3D structure of the Template

Fig. 8  3D structure of the prepared EGFR receptor (pdb id = 2ITO)
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Designed compound 3 (Moldock score = -153.96, 
Rerank score = -105.477) is found to interact with the 
binding pocket of the EGFR receptor through single 
conventional hydrogen bonds, four (4) carbon-hydro-
gen bonds, an electrostatic Pi-cation interaction, three 
(3) Pi-sulfur interactions, and several alkyl and pi-alkyl 
hydrophobic interactions. The THR845 residue forms 
a conventional hydrogen bond with the hydrogen atom 
of the ortho-hydroxyl group attached to the β-benzene 
ring. THR790 forms carbon-hydrogen bonds with 
a chlorine atom attached to the naphthalene group; 

GLY796 forms two carbon-hydrogen bonds with 
oxygen and hydrogen atoms of the furyl group; and 
ASP800 forms the remaining carbon-hydrogen bond 
with a hydrogen atom of the furyl group. Phenyl rings 
of the Naphthalene group intercalated in space to form 
an electrostatic Pi-Cation interaction with LYS745, two 
(2) Pi-Sulfur interactions with MET766, and CYS797 
forms the other Pi-Sulfur interaction with the Furyl 
ring moiety. LYS745, MET766 and LEU788 form alkyl 
hydrophobic interactions, while LEU718, LYS728, 
LEU792, VAL726, ALA743, and LYS745 residues form 

Fig. 9  2D and 3D interactions of designed analogue 7 with the active site of the in the active site of the EGFR receptor

Fig. 10  3D and 2D Interactions of designed compound 6 with the active site of the EGFR receptor
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several pi-alkyl hydrophobic interactions. Fig. 13 shows 
the 2D and 3D interactions of designed compound 3 in 
the active site of the EGFR receptor.

Designed compound 5 (MolDock score = -150.758, 
Rerank score = -84.7712) interacted with the active 
site of the EGFR receptor via a single conventional 
and carbon-hydrogen bond, two (2) electrostatic Pi-
anion, one hydrophobic Pi-Sigma, and several alkyl 
and Pi-Alkyl interactions. LYS745 forms a conven-
tional hydrogen bond with the carbonyl oxygen of the 
quinazoline group. SER719 forms a carbon-hydrogen 
bond with a chlorine atom attached to the benzofuran 
group. Benzene rings adjacent to the carbonyl group 
and the other at the -position are intercalated in space 

to form electrostatic Pi-anion interactions with ASP855 
and ASP800. LEU718 forms a Pi-Sigma hydrophobic 
interaction with the benzofuran moiety; LEU718 and 
VAL726 residues form alkyls, while VAL726, ALA743, 
LYS745, MET766, LEU788, LEU844, CYS797, and 
LEU718 form hydrophobic Pi-Alkyl interactions. 
Fig.  14 shows the 2D and 3D interactions of designed 
compound 5 in the active site of the EGFR receptor.

Designed compound 1 (MolDock score = -137.652; 
Rerank score = -100.296) interacted with the EGFR 
receptor through electrostatic Pi-cations and Pi-anion 
interactions and hydrophobic alkyl and Pi-alkyl interac-
tions. The benzene rings of the compounds intercalate 
in space and form electrostatic Pi-cation and Pi-anion 

Fig. 11  2D and 3D Interactions of designed compound 2 with the active site of the EGFR receptor

Fig.12  2D and 3D Interactions of designed compound 4 with the active site of the EGFR receptor
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interactions with LYS745, ARG841, and ASP837. 
VAL726 and LYS745 residues form alkyl interactions, 
while PRO877, LYS745, LEU747, ILE759, and ALA722 
form hydrophobic pi-alkyl interactions. Fig.  15 shows 
the 2D and 3D interactions of design compound 1 in 
the active site of the EGFR receptor.

This research revealed that Hydrogen bond is the main 
driving force that regulates the interactions existing 
between the designed inhibitors and the binding pocket 
of the EGFR receptor. Low Docking scores exhibited by 
designed compound 1 is due to the absence of Hydro-
gen bond interactions between the compound and the 

protein receptor while higher binding scores of the other 
designed analogues is due to the presence of several 
Hydrogen bond interactions between the compounds 
and the target receptor [13].

Furthermore, to validate the docking studies, the 
lead compound (5) and the reference drug (DOX) were 
also docked onto the same binding pocket of the EGFR 
receptor and it was affirmed that their docking scores is 
lower than that of the designed compounds. Thus, the 
designed compounds might serve as novel candidates of 
EGFR inhibition displaying better capacity than DOX as 
observed from the docking simulation results.

Fig. 13  2D and 3D Interactions of designed compound 3 with the active site of the EGFR receptor

Fig. 14  2D and 3D Interactions of designed compound 5 with the active site of the EGFR receptor
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Result of Pharmacokinetics and ADMET properties
The results of the pharmacokinetic and ADMET prop-
erties studies of the designed quinazoline-4-ones are 
presented in Tables 7 and 8, respectively. There are high 
expectations that the designed analogues might possess 
drug-like properties since they all passed Lipinski’s rule 
of five (they violate only one of the rules, MW > 500). 
Synthetic accessibility values of compounds are scaled 
from 1 (simple to synthesize) to 10 (very difficult to syn-
thesize); their synthetic accessibility values range from 
3.74 to 4.06, which suggests that they can be easily syn-
thesized [22]. The designed compounds have a high bioa-
vailability score of 0.55, which indicates that they are well 
absorbed by the blood plasma. Additionally, the designed 
compounds displayed high human intestinal absorption, 
which ranges from 96.265 to 100%, these values exceed 
the minimal satisfactory absorbance value of 30% [27, 28]. 
The values of LogBB and LogPS for the designed com-
pounds indicate that they are dispersed uniformly to the 
brain and are deemed to permeate the central nervous 
system [24, 25]. Furthermore, they are both substrates 
and inhibitors of the most crucial class of superenzyme 
3A4, which plays a critical role in drug metabolism. A 
parameter that expresses the linkage between the elimi-
nation of a drug per unit time and its amount in the 
body is the total clearance (TC). These designed inhibi-
tors show reasonable values of TC, which are within the 
acceptable range of a drug composite in the body. AMES 
toxicity studies revealed that they are non-toxic [29, 30].

Conclusions
In this study, coupled GFA-MLR in Material Studio v8.0 
was utilized to develop four (4) QSAR models on a series 
of quinazoline-4-one derivatives. The first model was 
selected due to its statistical impact with the following 

parameters: R2 = 0.919, R2adj = 0.898, Ntrain = 25, 
Q2cv = 0.819, Ntest = 10, and R2pred = 0.7907. The 
selected model was then employed for the prediction of 
the pIC50 of seven (7) newly designed quinazolin-4-one 
analogues with the ability to inhibit the growth of the 
MCF-7 breast cancer cell line. The coefficient of determi-
nation for the Y-scrambling test (cR2p) performed on the 
descriptors present in the selected model is found to be 
0.7049; this revealed that the model was not obtained by 
chance correlation and is powerful enough for the predic-
tion of the anti-cancer activities of the compounds. The 
new novel compounds were designed by using compound 
4 as a template due to its high pIC50 value (5.18) and 
low residual value (-0.01), which are within the defined 
domain of applicability of the selected model. All the 
designed compounds have better predicted pIC50 which 
range from 5.43 to 5.91, compared to the template (5.18) 
and the reference drug DOX (5.35) used in this study. 
Moreover, molecular docking studies were done between 
the designed compounds and the binding pocket of the 
epidermal growth factor receptor (EGFR) with PDB code 
2ITO and were found to have better docking scores than 
the template and the reference drug. In addition, these 
drug candidates displayed excellent physicochemical 
properties. Hence, their synthesis and in vivo and in vitro 
analyses may affirm the designed analogues as novel 
EGFR inhibitors for breast cancer treatment.
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Fig. 15  2D and 3D Interactions of designed compound 1 with the active site of the EGFR receptor
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