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Abstract 

Background  Although advances in immune checkpoint inhibitor (ICI) research have provided a new treatment 
approach for lung adenocarcinoma (LUAD) patients, their survival is still unsatisfactory, and there are issues in the era 
of response prediction to immunotherapy.

Methods  Using bioinformatics methods, a prognostic signature was constructed, and its predictive ability was 
validated both in the internal and external datasets (GSE68465). We also explored the tumor-infiltrating immune cells, 
mutation profiles, and immunophenoscore (IPS) in the low-and high-risk groups.

Results  As far as we are aware, this is the first study which introduces a novel prognostic signature model using 
BIRC5, CBLC, S100P, SHC3, ANOS1, VIPR1, LGR4, PGC, and IGKV4.1. According to multivariate analysis, the 9-immune-
related genes (IRGs) signature provided an independent prognostic factor for the overall survival (OS). The low-risk 
group had better OS, and the tumor mutation burden (TMB) was significantly lower in this group. Moreover, the risk 
scores were negatively associated with the tumor-infiltrating immune cells, like CD8+ T cells, macrophages, dendritic 
cells, and NK cells. In addition, the IPS were significantly higher in the low-risk group as they had higher gene expres‑
sion of immune checkpoints, suggesting that ICIs could be a promising treatment option for low-risk LUAD patients.

Conclusion  The combination of these 9-IRGs not only could efficiently predict overall survival of LUAD patients 
but also show a powerful association with the expression of immune checkpoints and response to ICIs based on IPS; 
hoping this model paves the way for better stratification and management of patients in clinical practice.
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Introduction
Lung cancer stood out as the foremost contributor 
to cancer-related mortality and the second most fre-
quently occurring cancer in 2020, accounting for one in 
five (18.0%) cancer deaths and one in ten (11.4%) can-
cers diagnosed [1]. Non-small-cell lung cancer (NSCLC) 
represents about 85% of all lung cancer cases, with lung 
adenocarcinoma (LUAD) emerging as the most prevalent 
subtype diagnosed in non-smokers [2, 3]. Currently, sur-
gical resection, as well as other standard treatments, have 
increased the survival rates of patients with localized and 
early-stage cancer, whereas most LUAD patients with 
advanced disease experience high mortality rates [4]. In 
recent years, immune checkpoint (IC) inhibition using 
anti-PD1 or anti-PD-L1 antibodies has demonstrated 
striking clinical responses in NSCLC patients; However, 
it is worth noting that only a specific subgroup of patients 
experiences lasting clinical advantages [5–7]. There is 
evidence that biomarker-driven treatment can improve 
survival rates in advanced and metastatic LUAD [8–10]; 
therefore, identifying and developing biomarkers to pre-
dict the responsiveness of checkpoint inhibitor-based 
immunotherapy is crucial for a more effective approach 
to cancer immunotherapy.

The tumor immune microenvironment (TIME) con-
tains immune cells, inflammatory mediators, endothe-
lial cells, mesenchymal cells, and extracellular matrix 
(ECM) molecules [11]. The density, location, and type 
of immune cells in TIME influence the disease progres-
sion and could be a promising new approach as predic-
tive biomarkers for corresponding cancer prognosis [12]. 
Moreover, a growing body of evidence indicates that 
TIME plays a vital role in anti-cancer immunity, which 
may result in resistance to immune checkpoint inhibitor 
therapy [13–15]. This study aimed to develop a signature 
based on immune-related genes which could predict the 
prognosis and response to ICI treatment in patients with 
LUAD. Following the construction of the model, its rela-
tionship to prognosis and clinicopathological characteris-
tics was investigated in The Cancer Genome Atlas Lung 
Adenocarcinoma (TCGA-LUAD) cohort. Furthermore, 
we explored the tumor-infiltrating immune cells, muta-
tion profiles, and immunophenoscore (IPS) related to 
this signature in LUAD. This may be implemented to pre-
dict the overall survival and thereby improve future ICI 
treatment for LUAD.

Methods
Data collection
We downloaded the LUAD patients’ transcription 
profiles and clinical data from Cancer Genome Atlas 

(TCGA) data portal (https://​portal.​gdc.​cancer.​gov/) using 
the R package “TCGAbiolinks.” We also downloaded 
another microarray dataset (GSE68465) from Gene 
Expression Omnibus (GEO) database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) for further validation of the signature. 
The inclusive list of IRGs was obtained from the Immu-
nology Database and Analysis Portal (ImmPort) database 
(https://​immpo​rt.​niaid.​nih.​gov) [16]. The immunophe-
noscore of patients was gained from The Cancer Immu-
nome Atlas (TCIA) database (https://​tcia.​at/​home).

Screening of DEGs
After normalization of the TCGA dataset, to identify the 
IRGs which contributed to LUAD progression, differen-
tially expressed genes (DEGs) between tumor and normal 
samples were screened using the “limma” package [17]. 
We set the significance criteria as follows:| logFC |> 2 and 
adjusted P-value < 0.01. After intersecting IRGs from the 
ImmPort database, we identified differentially expressed 
immune-related genes (DE IRGs).

Functional enrichment analyses
The Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses were 
used to explore the possible molecular mechanisms 
of DE IRGs using the “clusterProfiler” R package [18]. 
Adjusted P-value below 0.05 was deemed to be statisti-
cally significant. To get much more information, we also 
used the ToppFun enrichment (https://​toppg​ene.​cchmc.​
org/​enric​hment.​jsp).

Construction of prognostic prediction model based on risk 
score
At this step, normal samples and samples without sur-
vival data were excluded, and the rest of the TCGA-
LUAD project underwent a random division into training 
and testing cohorts. The training set was utilized for 
the identification of prognostic IRGs and the establish-
ment of a prognostic immune-related risk model, while 
prognostic qualification was validated using the testing 
cohort. To pinpoint potential DE IRGs with prognostic 
value, identified DE IRGs were subjected to univariate 
Cox regression analysis using “survminer” and “survival” 
R packages. Then a least absolute shrinkage and selection 
operator (LASSO) penalized Cox proportional hazards 
regression was conducted on prognosis-related DE IRGs 
to find the best genes for constructing the model and 
minimize overfitting using the “glmnet” R package [19, 
20]. Finally, the risk score of each LUAD patient was cal-
culated based on gene expression and the corresponding 
multivariate Cox regression coefficient. The formula was 
as follows:

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://immport.niaid.nih.gov
https://tcia.at/home
https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
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Evaluation of the established immune‑related signature
Based on the median cutoff of risk score, patients were 
divided into low- and high-risk groups. To assess the 
prognostic value of the DE IRG model, the Kaplan–Meier 
analysis was performed using “survminer” and “survival” 
R packages. To evaluate the sensitivity and specificity of 
the immune-related risk signature, the receiver operating 
characteristic (ROC) curve analyses of 1-, 3-, and 5-year 
were used, and the area under the curve (AUC) was cal-
culated using “survivalROC” R package [21]. Univariate 
and multivariate Cox regression analyses were employed 
to assess the independent prognostic value of risk score 
and clinicopathological features, such as age, gender, 
TNM stage, and clinical stage. In addition, we used the 
Wilcoxon test to determine the differences between the 
clinicopathological characteristics of patients in terms of 
risk scores.

Investigation of tumor‑infiltrating immune cells
Various methods for estimating immune infiltration, 
including CIBERSORT, quanTIseq, TIMER, and XCELL 
were used to investigate the status of immune infiltra-
tion among LUAD patients. An analysis of the Spearman 

Risk score = (expression of Gene 1 × coefficient Gene 1)

+ (expression of Gene 2 × coefficient Gene 2)

+ . . . (expression of Gene n × coefficient Gene n)

correlation was conducted to determine the relationship 
between immune infiltrating cells and risk scores.

Mutation analysis
Mutation data in the form of Mutation Annotation For-
mat (MAF) and tumor mutation burden (TMB) was 
obtained from the TCGA portal, and the “maftools” R 
package was used to analyze it [22].

Immunophenoscore analysis
The immunogenicity is assessed by MHC molecules, 
immunosuppressive cells, effector cells, and immu-
nomodulators that collectively make up four significant 
categories of genes, from which machine learning can 
determine the patient’s IPS without bias. IPS is calcu-
lated using a scale from 0 to 10, with higher scores rep-
resenting a greater level of immunogenicity [23]. The IPS 
results of 20 different solid tumors can be accessed at 
(https://​tcia.​at/​home).

Statistical analysis
The statistical analyses were conducted using R software 
version 4.2.1 and GraphPad Prism version 9.4. We used 
the R package “pheatmap” to create the heatmap and the 
package “ggplot2” to generate the volcano plot. A Venn 
diagram was generated on the site of (https://​bioin​forma​
tics.​psb.​ugent.​be/​webto​ols/​Venn). The flowchart of the 
study is depicted in Fig. 1.

Fig. 1  The flowchart of the study

https://tcia.at/home
https://bioinformatics.psb.ugent.be/webtools/Venn
https://bioinformatics.psb.ugent.be/webtools/Venn
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Results
Patients’ characteristics
Among the 598 samples analyzed in the TCGA-LUAD 
project, 13 patients had no clinical and survival data. 
Therefore, RNA-sequencing expression profiles and 
other information from 59 normal and 526 LUAD 
samples were included in this study. The LUAD sam-
ples were randomly split into two groups: a training 
cohort with 421 samples and a testing cohort with 105 
samples. Table  S1 details the clinical characteristics 
of samples in the training, testing, and entire cohorts, 
indicating no significant differences among them 
(P > 0.05).

Screening of DE‑IRGs
According to the adjusted P-value < 0.01 and |log2 
(fold change)|> 2, a total of 696 DEGs were identified 
between normal and LUAD samples of the TCGA-
LUAD project for further analysis (Fig. 2A). After inte-
grating 1565 IRGs, we obtained 91 DE-IRGs (Fig. 2B), 
of which 20 DE-IRGs were up-regulated, and 71 DE-
IRGs were downregulated (Table S2). DE-IRGs expres-
sion profile of normal and tumor samples is shown in 
Fig. 2C.

Functional enrichment analysis
To better understand the underlying mechanisms and 
predict the prognosis of LUAD, we further investigated 

the functions and pathways affected by these 91 DE-
IRGs. GO analysis indicated that the most significantly 
(adjusted P-value < 0.05) enriched terms for biological 
process, molecular function, and cellular component were 
“regulation of chemotaxis,” “G protein-coupled peptide 
receptor activity,” and “external side of plasma membrane,” 
respectively. The most ten highly enriched terms for the 
three ontologies are represented in Fig.  3A and Table  1. 
To identify possible signaling pathways associated with 
DE-IRGs, we conducted an analysis of KEGG with data 
from the TCGA cohort (Fig. 3B and Table 2). The results 
of ToppFun enrichment are also summarized in Table S3.

Construction of prognostic prediction model based on risk 
score
A univariate Cox regression analysis was performed to 
recognize potentially predictive genes among DE-IRGs, 
and 10 DE-IRGs were found to have significant relations 
to OS (P < 0.05) in the training cohort of LUAD patients 
(Table  3). Next, the candidate genes underwent LASSO 
Cox regression analysis to eliminate genes with high cor-
relations and minimize overfitting. Totally, 9 of the 10 
DE-IRGs were screened (Fig. 4). The heatmap of these 9 
DE- IRGs between two risk groups in the entire cohort is 
depicted in Fig. 5. We utilized these 9 DE-IRGs to con-
struct the prognosis predictive model by multivariate 
Cox regression analysis (Table 4) and calculated the risk 
score as follows:

Fig. 2  Identification of DE-IRGs between LUAD samples and normal samples. A Volcano plot of DEGs based on TCGA-LUAD project. B Venn diagram 
for the intersections between LUAD DEGs and IRGs. C The heatmap of DE-IRGs expression between the normal and tumor samples
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Validation of the prognostic prediction model
To validate the immune-related gene signature, the 
entire testing cohorts were used as internal validation to 
verify its predictive capability. All LUAD patients within 
the three cohorts were stratified into low- and high-risk 
groups using the median risk score value derived from 
the training group. As the next step, we investigated how 
well the prognostic model could distinguish survival 
in patients’ risk groups. The analysis of Kaplan–Meier 
curves indicated a significant difference in OS among 
the two predicted groups of all cohorts, and high-risk 
patients had a poor outcome (Fig.  6A–C). The time-
dependent ROC curves were performed to validate the 
accuracy of the model, and the 5-year AUC values gained 
0.684, 0.717, and 0.689 in the training, testing, and entire 
cohorts, respectively (Fig. 6D–F), suggesting that it may 
be feasible to predict the survival of LUAD patients using 
this presented model. Additionally, the findings indi-
cate that patients with higher risk scores are more prone 
to worse survival outcomes (Fig.  6G–L). Overall, these 
results showed satisfactory predictive performance of the 
IRGs signature in TCGA-LUAD data. We also validated 

Risk score = (BIRC5 exp . × 0.081428)

+ (CBLC exp . × 0.050255)

+ (S100P exp . × 0.047464)

+ (SHC3 exp . × − 0.008143)

+ (ANOS1 exp . × − 0.040922)

+ (PGC exp . × − 0.026052)

+ (VIPR1 exp . × − 0.082896)

+ (LGR4 exp . × 0.159715)

+ (IGKV4.1 exp . × − 0.083087)

our model using an external independent validation data-
set (the GSE68465 dataset). Of note, the Kaplan–Meier 
curves analysis demonstrated a more satisfactory out-
come for low-risk group patients. The results of Kaplan–
Meier curves, as well as 1-, 3- and 5-year AUC, were 
represented in Fig.  7, further highlighting that the risk 
signature performed satisfactorily as a predictor of exter-
nal data.

Evaluation of the prognostic prediction model
Association between the model and clinicopathological 
features
Interestingly, the results of the Wilcoxon rank sum test 
indicate a statistically significant association between the 
risk score and clinicopathological features of patients. 
Specifically, the 9-IRG risk score demonstrated a nota-
bly elevated correlation with advanced clinical T stage 
(P = 0.0482) and N stage (P < 0.0001) (Fig.  8C, D). 
Accordingly, the prognostic value of the model may par-
tially be due to its association with clinicopathological 
characteristics.

Independent prognostic role of the model
Univariable Cox and multivariable Cox were used to ana-
lyze the effects of patients’ clinicopathological factors on 
the predictive value of the risk score as an independent 
parameter. Although the advance clinical stage, TNM 
stage, and high score of risk were factors that made OS 
unfavorable, the most significant association was seen 
between the OS and the risk score in the multivari-
able Cox analysis (HR = 2.5700,  P = 2.36e-06) (Table  5), 
indicating the independent prognostic value of IRG 

Fig. 3  Functional enrichment analyses of DE-IRGs. A Most significant enriched Gene ontology (GO) categories for the validated DE-IRGs. B The 
enriched pathways of the DE-IRGs
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signatures—regardless of age, disease stage, and TNM 
stages—in LUAD patients.

Association between the risk score and tumor‑infiltrating 
immune cells
Overall, the high-risk group demonstrated lower fre-
quencies of immune cells. As represented in Fig.  9, not 
only DC and MQ but also T lymphocytes reduced in the 
tumor microenvironment of high-risk patients, suggest-
ing that impaired antigen presentation to T cells may at 
least partly contribute to poor prognosis. Accordingly, 

NK cells—as the most important innate immune cells 
against cancer cells—were low in these patients. We 
also applied the Wilcoxon rank sum test on the results 
of XCELL and quanTIseq to investigate the association 
between the risk groups and tumor-infiltrating immune 
cells, depicted in Fig. S1.

Association between the risk score and mutation profile
In the examination of LUAD patient mutation sta-
tuses, we have identified the top ten most significantly 
mutated genes for both high- and low-risk groups. 
These findings are visually represented in Fig. 10A and 

Table 1  The list of 10 most significant enriched GO categories for DE-IRGs. (Adjusted P-value < 0.05)

IDs Term Adj. P-value Count

Biological process
  GO:0050920 Regulation of chemotaxis 1.47E-11 16

  GO:0042742 Defense response to bacterium 5.99E-10 17

  GO:0060326 Cell chemotaxis 5.99E-10 16

  GO:0003018 Vascular process in circulatory system 5.99E-10 15

  GO:0006959 Humoral immune response 5.99E-10 16

  GO:0033002 Muscle cell proliferation 1.4E-09 14

  GO:0001667 Ameboidal-type cell migration 2.13E-09 18

  GO:0032102 Negative regulation of response to external stimulus 3.27E-09 17

  GO:0050673 Epithelial cell proliferation 4.83E-09 17

  GO:0050921 Positive regulation of chemotaxis 1.15E-08 11

Cellular component
  GO:0009897 External side of plasma membrane 0.000119 12

  GO:0005581 Collagen trimer 0.000143 6

  GO:0030139 Endocytic vesicle 0.000143 10

  GO:0042571 Immunoglobulin complex, circulating 0.000767 5

  GO:0030666 Endocytic vesicle membrane 0.000767 7

  GO:0072562 Blood microparticle 0.001157 6

  GO:0045334 Clathrin-coated endocytic vesicle 0.001157 5

  GO:0045121 Membrane raft 0.001747 8

  GO:0098857 Membrane microdomain 0.001747 8

  GO:0062023 Collagen-containing extracellular matrix 0.001845 9

Molecular function
  GO:0008528 G protein-coupled peptide receptor activity 1.81E-08 11

  GO:0001653 Peptide receptor activity 1.81E-08 11

  GO:0030546 Signaling receptor activator activity 9.38E-08 16

  GO:0042562 Hormone binding 3.87E-07 8

  GO:0048018 Receptor ligand activity 3.87E-07 15

  GO:0019955 Cytokine binding 8.24E-07 9

  GO:0042277 Peptide binding 1.19E-06 12

  GO:0030215 Semaphorin receptor binding 1.88E-06 5

  GO:0038024 Cargo receptor activity 2.3E-06 7

  GO:0017046 Peptide hormone binding 3.65E-06 6
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B. In the following analysis, we computed the TMB 
for each sample. Our findings revealed a considerably 
higher TMB in the high-risk patients (P = 3.148e-06) 
(Fig.  10C); however, we did not observe any relation-
ship between TMB and OS (P = 0.81) (Fig.  10D). The 
results of this section will be further elaborated in the 
Discussion.

Association between the risk score and response to ICI
It has been confirmed that IPS could serve as predic-
tive markers in melanoma patients undergoing treat-
ment with PD-1 and CTLA-4 blockers [24]. Given 
this, it was tempting to investigate whether there is a 
relationship between our immune model and IPS. As 

represented in Fig. 11, the IPS scores exhibited a signifi-
cant increase within the low-risk 9-IRG group, indicat-
ing a more pronounced immunogenic phenotype in this 
particular low-risk cohort. Furthermore, patients with a 
low risk had elevated levels of CTLA-4 (P = 1.913e-08), 
PD-1 (P = 8.118e-05), PDL-1 (P = 0.0243), and PDL-2 
(P = 0.007663) expression, suggesting that ICI could be a 
promising treatment option for low-risk LUAD patients.

Discussion
Lung cancer ranked as the primary cause of cancer-related 
fatalities in 2020, of which LUAD accounts for almost 40% 
[2]. Apart from environmental factors like occupational 
carcinogens, exposure to tobacco smoke, pre-existing 

Table 2  The list of most significantly enriched pathways for DE-IRGs. (Adj P-value < 0.05)

No. Pathway IDs Pathway names Adj. P-value Count

1 hsa04060 Cytokine-cytokine receptor interaction 0.000143 13

2 hsa04080 Neuroactive ligand-receptor interaction 0.000686 13

3 hsa04145 Phagosome 0.001978 8

4 hsa04360 Axon guidance 0.005275 8

5 hsa04061 Viral protein interaction with cytokine and cytokine 
receptor

0.005625 6

6 hsa04151 PI3K-Akt signaling pathway 0.016834 10

7 hsa04014 Ras signaling pathway 0.016834 8

8 hsa04020 Calcium signaling pathway 0.016892 8

9 hsa04923 Regulation of lipolysis in adipocytes 0.021483 4

10 hsa04015 Rap1 signaling pathway 0.028469 7

11 hsa04066 HIF-1 signaling pathway 0.029728 5

12 hsa04924 Renin secretion 0.032646 4

13 hsa04010 MAPK signaling pathway 0.037333 8

14 hsa03320 PPAR signaling pathway 0.037858 4

15 hsa01521 EGFR tyrosine kinase inhibitor resistance 0.042211 4

16 hsa04926 Relaxin signaling pathway 0.042211 5

17 hsa04062 Chemokine signaling pathway 0.048183 6

Table 3  Univariate cox

* indicates a P-value < 0.05; **indicates a P-value < 0.001

Gene Coef. HR HR.95L HR.95H P-value

1 BIRC5 0.16325 1.177 1.048 1.322 0.00588**

2 GDF10 -0.16007 0.8521 0.7266 0.9992 0.0489*

3 CBLC 0.17262 1.188 1.033 1.367 0.0158*

4 S100P 0.06846 1.071 1.015 1.13 0.0127*

5 SHC3 -0.1382 0.8709 0.7636 0.9933 0.0394*

6 ANOS1 -0.14192 0.8677 0.7702 0.9776 0.0196*

7 PGC -0.04348 0.9574 0.9168 0.9999 0.0496*

8 VIPR1 -0.15594 0.8556 0.7466 0.9805 0.0249*

9 LGR4 0.20812 1.231 1.05 1.444 0.0103*

10 IGKV4.1 -0.07662 0.9262 0.8611 0.9963 0.0395*
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non-malignant lung disease, and radon, molecular aberra-
tions significantly influence the progression of lung cancer. 
In this regard, many signaling axes have been accused so 

far in the pathogenesis of this cancer; however, it appears 
that the mortality of lung cancer is caused by overlaps 
among these oncogenic pathways. According to the results 

Fig. 4  Construction of prognostic prediction signature. LASSO regression was performed to identify the minimum criteria

Fig. 5  The heatmap of 9 DE- IRGs between two risk groups in the total cohort
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Table 4  Coefficients and multivariable cox model results of 9 IRGs in risk signature

* indicates a P-value < 0.05

Gene Coef. HR HR.95L HR.95H P-value

1 BIRC5 0.081428 1.0848 0.9309 1.2642 0.2969

2 CBLC 0.050255 1.0515 0.8942 1.2365 0.5433

3 S100P 0.047464 1.0486 0.9786 1.1237 0.1783

4 SHC3 -0.008143 0.9919 0.8444 1.1652 0.9211

5 ANOS1 -0.040922 0.9599 0.8281 1.1126 0.5870

6 PGC -0.026052 0.9743 0.9246 1.0266 0.3289

7 VIPR1 -0.082896 0.9204 0.7782 1.0887 0.3330

8 LGR4 0.159715 1.1732 0.9926 1.3866 0.0611

9 IGKV4.1 -0.083087 0.9203 0.8515 0.9945 0.0359*

Fig. 6  Validation of the immune-related signature in the TCGA cohort. A–C The Kaplan–Meier curve analysis of the high- and low-risk groups 
in the training, testing, and total cohorts. D–F ROC curve analysis of the prognostic prediction model in the training, testing, and entire cohorts. G–L 
The distribution of risk scores and survival status in the training, testing, and total cohorts
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of KEGG, we found that 91 DE-IRGs are mainly associ-
ated with several oncogenic pathways, such as PI3K-Akt, 
MAPK, RAS, and EGFR. Notably, the new wave of studies 
has uncovered the role played by the PI3K/Akt pathway not 
only in lung cancer cell survival but also at the crossroads of 
different cancer-related pathways [25]. The oncogenic role 
of MAPK, RAS, and EGFR deregulation has been also high-
lighted in the development of NSCLC [26]; interestingly, 

it has been indicated that up-regulation of CBLC—as one 
of the 9-IRG in our model—leads to enhanced stability of 
EGFR and sustained activation of its downstream signaling 
[27]. Given these, in recent years, PI3K, MAPK, and EGFR 
have been found to be viable therapeutic targets for novel 
treatments of cancer; however, lung cancer progression 
relies not only on the molecular features of tumor cells but 
also on their interaction with the tumor microenvironment, 

Fig. 7  Validation of the immune-related signature in the GSE68465 cohort. A The Kaplan–Meier curve analysis of the high- and low-risk groups 
in GEO cohort. B ROC curve analysis of the prognostic prediction model in GEO cohort

Fig. 8  The relationships between the immune-related risk signature and A age; B clinical stage; C T stage; D N stage; E M stage
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specifically with the immune cells [28]. In this vein, T cell 
activation-induced inhibitory checkpoint molecules, such 
as CTLA4, PD1, PDL1, and PDL2, are the most relevant 
target for immunotherapy nowadays [29], and certain ICIs 
are approved for the treatment of a wide range of malig-
nancies including NSCLC [30].

Despite advances in ICI therapy, only a subset of patients 
achieves durable clinical benefits, and their survival rate is 

still unsatisfactory [4]. Accordingly, there is an urgent need 
to present specific biomarkers that can be used to assess 
risk and predict the prognosis of LUAD patients and facili-
tate the development of beneficial therapies. In the current 
investigation, we established a prognostic immune-related 
model by using 9-IRGs, which their details are summarized 
in Table  6. Four genes (BIRC5, CBLC, S100P, and LGR4) 
were associated with high risk, whereas five genes (SHC3, 

Table 5  The univariate and multivariate cox regression analysis to evaluate the independent prognostic value

* indicates a P-value < 0.05; **indicates a P-value < 0.001; ***indicates a P-value < 0.0001

Unicox Multicox

HR 95% CI of HR P-value HR 95%CI of HR P-value

Age 1.006 0.9908-1.021 0.456 1.0089 0.9908-1.027 0.3364

Gender 1.076 0.8071-1.435 0.618 0.9756 0.6966-1.366 0.8858

Stage 2.669 1.96-3.634 4.65e-10*** 1.5022 0.9129-2.472 0.1093

T 2.285 1.562-3.345 2.1e-05*** 1.7661 1.0910-2.859 0.0206*

N 2.521 1.883-3.375 5.18e-10*** 1.6308 1.0938-2.431 0.0164*

M 2.198 1.284-3.761 0.00406** 1.2852 0.6640-2.488 0.4565

Risk score 2.837 2.076-3.877 5.94e-11*** 2.5700 1.7366-3.803 2.36e-06***

Fig. 9  The correlation between risk score and tumor-infiltrating immune cells, which were analyzed by different quantification methods of immune 
infiltration estimations including CIBERSORT, quanTIseq, TIMER, XCell
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Fig. 10  Tumor mutational burden (TMB) status among risk groups. A Mutation profile of the low-risk group. B Mutation profile of the high-risk 
group. C A correlation analysis between TMB and risk score. D The Kaplan–Meier curve analysis of high- and low-TMB groups

Fig. 11  The association between risk groups and response to immune checkpoint inhibitors (ICI). A The gene expression of CTLA-4, PD-1, 
and PD-L1 in the high-risk and low-risk groups. B The association between IPS and the immune-related risk signature in LUAD patients
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ANOS1, PGC, VIPR1, and IGKV4.1) were protective fac-
tors in LUAD patients. An increasing body of evidence 
supports the role of BIRC5, CBLC, VIPR1, and LGR4 in 
proliferation [31–34], as well as S100P and PGC in can-
cer metastasis [35, 36]. Interestingly, LGR4 alteration was 
associated with immunomodulation by promoting mac-
rophage M2 polarization by Rspo/Lgr4/Erk/Stat3 signaling 
and restricting the anti-tumor activity of CD8+ T cells [37]. 
Notably, the infiltrating of immune cells into the TME con-
tributes to different biological functions in malignancies, 
and the cross-talk between cancer and immune cells plays a 
pivotal role in determining the fate of tumor [38, 39].

For further investigation, we applied several algorithms 
to assess the status of immune infiltration in both low-risk 

and high-risk cohorts. Our findings revealed a negative 
correlation between the risk scores of LUAD patients and 
the presence of immune cells within the tumor; it appears 
that according to the low frequency of DC, MQ, and dif-
ferent types of T cells in high-risk patients, antigen pres-
entation, T cell activation, and finally, killing of cancer 
cells are hampered in these patients. Notably, it has been 
documented that CD8+ T cell infiltration in the TME is 
associated with improved cancer patient responses to 
ICIs; Wong et  al. demonstrated that melanoma patients 
who received anti-PD-1 therapy experienced prolonged 
survival when they had a high CD8+ T cell count [40]. 
Figure  12 provides a better overview of the TIME and 
underlying mechanisms of our 9-IRGs.

Fig. 12  A plausible schematic of underlying mechanisms of CBLC, BIRC5, S100P, PGC, and LGR4 genes with a glance at the tumor immune 
microenvironment of high- and low-risk groups. The upregulated CBLC mediates polyubiquitination of EGFR and promotes its trafficking 
into the nucleus or recycling back to the cell membrane, leading to enhanced stability of EGFR and sustained activation of its downstream 
signaling. BIRC5 (survivin) binds and suppresses effector caspases, resulting in decreased apoptosis. The S100P protein is expressed in an inactive 
state and triggered by calcium ions to form active dimers; they can operate intracellularly or as extracellular signaling molecules. Inside the cell, 
binding of S100P to ezrin leads to its activation, followed by the regulation of invasion and metastasis. The secreted form of S100P can bind 
to the extracellular ligand-binding site of RAGE and, via activation of the ERK/MAPK pathway, influences gene expression. Downregulation 
of PGC inhibits pro-surfactant protein B (pro-SPB) maturation, resulting in tumor cell dedifferentiation or deterioration, closely related to cancer 
metastasis. LGR4 promotes macrophage M2 polarization by Rspo/Lgr4/Erk/Stat3 signaling and restricting the anti-tumor activity of CD8+ T cells 
and NK cells. The tumor microenvironment of low-risk patients contains effector cells like CD8+ T cells and NK cells. On the other hand, the tumor 
microenvironment of high-risk patients is suppressed by immunosuppressor cells such as macrophage M2 and Treg
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Apart from immune cell infiltration, it is reported that 
TMB could be a possible predictive factor for ICI ther-
apy. A recent meta-analysis containing 11 studies dem-
onstrated that NSCLC patients with high TMB could 
benefit more from immunotherapy than patients with 
low TMB [41]; however, several other studies showed 
that high TMB failed to predict ICI response across all 
cancer types [42–44]. There is also a controversy about 
the cutoff value of the TMB [45]. In alignment with a 
prior investigation, we have observed a notable decrease 
in the TMB within the low-risk patients [46], indicat-
ing that high TMB does not necessarily lead to a better 
response to ICI therapy. The rationale for this could be 
that the IPS is a multifaceted model comprising various 
variables. As a result, it is feasible that other elements, 
such as increased expression of immune checkpoints, 
might contribute to a better ICI response in the low-risk 
cohort.

Since it has been proved that IPS has a predictive 
value in patients receiving PD-1 and CTLA-4 inhibi-
tors for melanoma [24], we investigated IPS among our 
risk groups. According to the results, low-risk patients 
had significantly higher IPS values, meaning that the 
immunogenicity of the tumor immune contexture was 
also elevated in this group. To reconfirm the checkpoint 
inhibitor-based immunotherapy efficacy in LUAD sam-
ples with different risk scores, we also investigated the 
expression of immune checkpoint genes. The findings 
revealed that the low-risk group had high levels of their 
expression, indirectly implying the preexisted T cell acti-
vation for this group, suggesting that they had a better 
chance of receiving ICI treatment.

Conclusion
Taken together, we developed an IRG-based prognostic 
model in LUAD patients, which is predictive of patients’ 
survival and ICI immunotherapy outcomes and reflects 
the tumor immune microenvironment status based on 
RNA sequencing data. We believe that this signature 
might be helpful in managing LUAD patients in clini-
cal practice; however, its validation in clinical settings is 
required.
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