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Abstract

Background: One of the well-differentiated types of thyroid cancer is papillary thyroid cancer (PTC), often
developed by genetic mutations and radiation.

Methods: In this study, the public NCBI-GEO database was systematically searched. The eligible datasets were the
targets for biomarker discovery associated with PI3K signaling pathway.

Results: Only two datasets were suitable and passed the inclusion criteria. The meta-analysis outcomes revealed
eleven upregulation and thirteen downregulation genes differentially expressed between PTC and healthy tissues.
Moreover, the outcomes for survival and disease-free rates for each gene were illustrated.

Conclusions: The present research suggests a panel signature of 24 gene biomarkers in diagnosing the PTC.
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Background
Papillary thyroid cancer (PTC), as one of the most
prevalent cancer types diagnosed in the thyroid gland,
covers more than 85% of total thyroid cancers [1, 2].
According to the fact that most of the large followed up
thyroid cancer studies, specifically PTC, are epidemically
carried out in the US nations, there are very few data
available for monitoring the incidence of PTC worldwide
[2]. Moreover, the well-known Surveillance, Epidemi-
ology, and End Results database (SEER13) showed that
the 5-year relative survival rate for 2010-2016 in the
USA was 98.3% through age-adjusted incident rate with
an unchanged trend for mortality rate of 0.4-0.5% [3].
Additionally, the Korean literature report indicated that
the recurrence rate of patients with PTC after surgical
treatment was less than 15% which led to survival by
about 65% without including either 5- or 10-year
survival rates [4]. However, various aggressive descriptors
determined for PTC disease from imaging techniques

have proposed a weak prognosis [4]. A recent case study
reported that even if the diagnosis of PTC is somewhat
tricky, combining a set of imaging techniques and fine-
needle aspiration would make the road simplifying the
PTC diagnosis [5].
The recent advancements in medical sciences have

performed well by using microarray technology in
narrowing down the list of diseases for diagnosis and
prognosis procedures [6, 7], and on the other hand, the
advances in technology will generate the Big data. In this
regard, studying molecular and cellular functions of the
particular diseases, e.g., the PTC, at genome-wide levels
needs to be of priority. In other words, to differentiate
between healthy and unhealthy tissues, the discovery of
robust biomarkers is essential, either through experi-
mental and clinical studies or computational biology
approaches on Omics datasets [8]. There are several
studies on investigating the molecular and physiological
mechanisms of activation and inactivation of different
signaling pathways having critical roles in the progress
of PTC [9]. Since signaling pathways constitute hundreds
of components, such as genes responsible for many cellu-
lar processes, their biological functions remain unclear
and complicated [9].
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Understanding the complex nature of PTC in terms of
the involved signaling pathways urges studying vital roles
of associated genes in the PI3K signaling pathway
between PTC and healthy patients. For this purpose, the
systematic search of the NCBI-GEO database retrieves
the results of interest for further analysis and content
screening based on inclusion and exclusion criteria.
Finally, the genes of the selected GEO datasets will be
the targets for identifying the differentially expressed
genes among the datasets to be considered as robust
biomarkers for PTC disease.

Methods
Identification of microarray datasets
The National Center for Biotechnology Information-
Gene Expression Omnibus (NCBI-GEO) database (i.e.,
http://www.ncbi.nlm.nih.gov/geo) was the repository
source for the systematic search of microarray datasets.
For this search, a Boolean query was used, including
the keywords “papillary thyroid cancer” or “PTC.”
Furthermore, a thorough inspection on the search re-
sults was necessary for identification and inclusion of
those GEO datasets in the analysis which satisfy the
following criteria: (i) based on “expression profiling by
array,” (ii) to be of [9606] organism, (iii) mRNA sam-
ple types, (iv) to have both PTC samples and healthy
controls, and (v) extracted from the source of thyroid
tumor. Notably, any platform types were of interest.
Moreover, the excluded GEO datasets were those that
not fulfilled the abovementioned inclusion criteria.
Accordingly, the final selected GEO datasets with
sufficient data were prone to perform a meta-analysis
by including the associated genes of the PI3K signal-
ing pathway.

Associated genes for PI3K signaling pathway
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (i.e., https://www.genome.jp/kegg/pathway.
html) was the resource to derive the involved genes in
the PI3K signaling pathway (hsa04151) for Homo
sapiens organism. Then, to carry out the meta-analysis
approach among the GEO datasets, the associated genes
of the PI3K signaling pathway were only considered for
this purpose.

Meta-analysis procedure
The ExAtlas free online tool for the meta-analysis of
gene expression datasets possesses several main func-
tions, such as the standard meta-analysis with fixed
and random effects, z-score, and Fisher’s methods [10].
For this purpose, the input of the ExAtlas website in-
cluded all GEO datasets meeting the inclusion criteria.
However, among the whole gene symbols available in
the GEO datasets, only those genes associated with the

PI3K signaling pathway were selected for meta-
analysis. The pre-processing stage of the input gene
expression datasets comprised log2 transformation and
quantile normalization applied to their corresponding
intensity values as well as t test ANOVA analysis.
After, a data quality check of the included samples was
carried out based on the standard deviation criterion
SD ≤ 0.3. Finally, the false discovery rate (FDR) and
fold change parameters were 0.05 and 2, respectively,
for the meta-analysis stage. Due to the heterogeneous
nature of the gene expression datasets, the results for
the random-effects model would be necessary.

Analyses of survival and relapse-free rates
In survival analysis, various statistical methodologies
analyzed the experimental data of interest in a de-
fined period of follow-up time, usually, 200 months,
in which death or relapse could happen carried out
by plotting the Kaplan-Meier estimates [11, 12]. In
this study, both overall survival (OS) and relapse-free
survival (RFS) rates were considered on the Cancer
Genome Atlas (TCGA)-THCA database professionally
developed for thyroid carcinoma (n = 512) against
control samples (n = 59). The Kaplan-Meier plots
were obtainable using the GEPIA2 (http://gepia2.
cancer-pku.cn/#index) web service [13]. In the KM-plot
analysis, the p-values less than 0.05 were significant for
input genes and the preset confidence interval for hazard
ratio was 95%.

Results
The overall results obtained from systematically
screening of the NCBI-GEO database, where the data
extraction procedure is depicted is Fig. 1, by taking in
to account the inclusion and exclusion criteria
showed that only two microarray datasets (i.e.,
GSE29265: 20 Normal and 20 PTC and GSE97001: 4
Normal and 4 PTC) were eligible for meta-analysis
procedure. Three hundred fifty-four out of a total of
354 genes involved in the PI3K signaling pathway
were selected from the two GEO datasets to identify
the significant genes differentially expressed between
the two tissue types. The ExAtlas website demon-
strated that all of the samples included in the GEO
datasets passed the initial quality control, which then
was suitable for the meta-analysis process based on a
random-effects model due to the existence of possible
heterogeneity. The meta-analysis revealed twenty-four
genes significantly expressed in terms of p-value and
FDR parameter between healthy and PTC samples,
among which the numbers of upregulated and down-
regulated genes were eleven and thirteen, respectively,
as represented in Fig. 2.
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The overall survival (OS) and disease-free rates (RFS)
for the identified upregulated and downregulated genes
are illustrated in Figs. 3 and 4, respectively. Among
upregulated genes, CCND2 was the only significant
gene in terms of OS rate with p-value 0.017. Moreover,
by considering the downregulated genes, three genes
(i.e., GHR p-value=0.0035, FGF7 p-value=0.014,
PRKCA p-value=0.045) were found to be significant
in terms of OS rate; however, four genes (i.e., KIT
p-value=0.012, GHR p-value=0.016, PGF p-value=
0.05, FGFR2 p-value=0.029) were significant in terms
of RFS rate.

Discussion
Despite the excellent reports on the prognosis of the
papillary thyroid carcinoma (PTC) as the predominant
form of thyroid cancer, estimating the overall survival
of PTC patients has still been remained unknown [15].

In the current research, a meta-analysis approach
could demonstrate the significant differentially
expressed genes between two GEO datasets meeting
the inclusion criteria with FDR<0.05. Avoiding any
possible inconsistency between the datasets is critical
such that only the GEO datasets with the source of
PTC tissues were eligible. In total, 24 genes (11 upreg-
ulated and 13 downregulated) were differentially
expressed in PTC patients while being compared to
the healthy samples with the statistical significance of
FDR <0.05 and p-value <0.05 (Table 1).
The above-listed genes in Table 1 were thoroughly

inspected for their confirmation through various experi-
mental studies considering the neoplastic thyroid dis-
ease. The expressions of associated genes in the PI3K
signaling pathway were half downregulated and half up-
regulated. Taking in to account that some studies have
reported on the target overexpressed gene whereas in

Fig. 1 The flowchart for the data extraction from NCBI-GEO database
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the current study was determined as downregulated, and
vice versa, the main reasons for this may generally
originate from several points such as viral infections,
patients clinical history, treatment status, the source of
control samples, the age of patients as well as patients’
race to mention a few (e.g., upregulation and downregu-
lation of has-mir-345 in pancreatic cancer [44, 45]).
Moreover, in the current meta-analysis study, statistical
stages, including data normalization, t test, and ANOVA
tests were performed on GEO datasets to compare the
PTC and healthy tissues in the same conditions. Due to
the error-prone nature of the clinical and experimental
trials, several biases (e.g., publication, laboratory, envir-
onmental, and user biases) may affect the reported out-
comes by the researchers, and hence, the gene
expression levels may not be comparable [46]. The
determined genes (with FC>2) in the current meta-
analysis study can be useful in identifying potent bio-
markers for future drug design and discovery. Among the
identified biomarkers associated with the PI3K signaling
pathway, four of them with FC > 4 were LAMB3
(upregulated), COMP (upregulated), KIT (downregulated),
and PDGFRA (downregulated). Various studies have
also confirmed the vital role of the activation of the
PI3K signaling pathway in the progression and

development of PTC disease [47, 48]. As described in
the “Results” section, seven genes were significant while
considering the OS and RFS rates; however, this out-
come will not decline the fact that the other remaining
biomarkers have vital roles in the development of the
PTC disease.
Consequently, in the current meta-analysis research, a

total of twenty-four genes associated with the PI3K sig-
naling pathway were identified and thoroughly screened
and validated via the experimental literature studies that
could propose a panel of potential biomarkers in PTC
disease.

Conclusion
The present study conducted on PTC GEO datasets
revealed the significant role of the meta-analysis
approach in determining the potential biomarkers for
the disease. Eleven upregulated and thirteen downreg-
ulated genes were identified and validated through the
literature investigations. By performing a meta-analysis
study, one may conclude this type of analysis can fill the
gaps between the computational and experimental studies;
however, due to the existence of possible heterogeneities
among the datasets, some of the differentially expressed
genes may be missed that may urge novel algorithms to

Fig. 2 Cluster analysis of significant genes obtained from the meta-analysis approach for (a) GSE97001 and (b) GSE29265 datasets using
Gene Cluster 3.0 and Java TreeView tools [14]. Upregulated genes with fold change combined values: LAMB3 (FC=23.836), COMP (FC=
7.85), SPP1 (FC=3.605), TNC (FC=3.072), RBB3 (FC=2.842), CCND1 (FC=2.734), TLR2 (FC=2.591), CCND2 (FC=2.475), LAMC2 (FC=2.452),
CDKN1A (FC=2.25), COL1A1 (FC=2.146); downregulated genes with fold change combined values: KIT (FC=9.05), PDGFRA (FC=4.126), IGF2
(FC=3.734), GHR (FC=3.626), BCL2 (FC=3.114), IRS1 (FC=3.038), LPAR1 (FC=2.67), FGF7 (FC=2.362), PGF (FC=2.31), FGFR2 (FC=2.245), PRKCA
(FC=2.242), LAMA2 (FC=2.239), MYC (FC=2.025)
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Fig. 3 The survival analyses of identified upregulated genes in terms of OS and RFS
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Fig. 4 The survival analyses of identified downregulated genes in terms of OS and RFS
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cover the shortcomings. The biomarker discovery is one
of the hot topics in the field, which still needs more
advancements in terms of technical, experimental, and
computational designs to achieve more robust and reliable
biomarkers, and hence, to provide its vital role in diagno-
sis, prognosis, and treatment of diseases.
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Table 1 The list of 24 genes consistently expressed differentially between two GEO datasets associated with the PI3K signaling
pathways in PTC patients seen in the literature

Gene
symbol

Chromosome
(source: https://www.
genecards.org/)

Disease
(source: https://www.genecards.org/)

References for
associated genes
and PTC

KIT 4q12 Gastrointestinal stromal tumors (GISTs), melanomas, lung cancer, and other tumor
types

[16, 17]

PDGFRA 4q12 Idiopathic hypereosinophilic syndrome, somatic and familial gastrointestinal stromal
tumors, and a variety of other cancers

[18, 19]

IGF2 11p15.5 One of the cancer-related genes [20]

GHR 5p13.1-p12 Laron syndrome and growth hormone insensitivity, partial [21]

BCL2 18q21.33 High grade B cell lymphoma with Myc and/or Bcl2 and/or Bcl6 rearrangement and
follicular lymphoma 1

[22]

IRS1 2q36.3 Diabetes mellitus, noninsulin-dependent and rare diabetes mellitus type 2 [23]

LPAR1 9q31.3 Pulmonary fibrosis and spinal stenosis [24]

FGF7 15q21.2 Mucositis and acanthoma [25]

PGF 14q24.3 Placental insufficiency and twin-to-twin transfusion syndrome [26]

FGFR2 10q26.13 Lung and breast cancers [27]

PRKCA 17q24.2 Chordoid glioma and papillary glioneuronal tumors [28]

LAMA2 6q22.33 Muscular dystrophy, congenital merosin-deficient, 1A and muscular dystrophy, limb-
girdle, autosomal recessive 23

[29]

MYC 8q24.21 Burkitt lymphoma and high grade B cell lymphoma with Myc and/or Bcl2 and/or Bcl6
rearrangement

[30]

LAMB3 1q32.2 Epidermolysis bullosa, junctional, Herlitz type, and epidermolysis bullosa, junctional,
non-Herlitz type

[31]

COMP 19p13.11 Pseudoachondroplasia and epiphyseal dysplasia, multiple, 1 [32]

SPP1 4q22.1 Pediatric systemic lupus erythematosus, and papillary cystadenocarcinoma [33]

TNC 9q33.1 Deafness, autosomal dominant 56, and autosomal dominant non-syndromic sensori-
neural deafness type Dfna

[34]

ERBB3 12q13.2 Lethal congenital contracture syndrome 2 and erythroleukemia, familial [35, 36]

CCND1 11q13.3 Von Hippel-Lindau syndrome and myeloma, multiple [37]

TLR2 4q31.3 Leprosy 3 and colorectal cancer [38]

CCND2 12p13.32 Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 3 [39]

LAMC2 1q25.3 Epidermolysis bullosa, junctional, Herlitz type, and epidermolysis bullosa [40]

CDKN1A 6p21.2 Multiple endocrine neoplasia, type I, and tongue cancer [41]

COL1A1 17q21.33 Caffey disease and osteogenesis imperfecta, type I [42, 43]
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