Dissociation of cells from primary breast normal and cancer tissues
This study was ethically approved by the institutional ethics committees of Government Arignar Anna Memorial Cancer Hospital & Research Institute at Kanchipuram, and Stem Cell Research Centre, Govt. Stanley Hospital at Chennai, Tamil Nadu, in compliance with the ethical guidelines framed by the Directorate of Medical Education, Government of Tamil Nadu, India. After obtaining informed written consent, fifteen human breast carcinoma tissue samples were collected from invasive ductal carcinoma patients undergoing mastectomy procedures. Adjacent normal tissues were also obtained 6 cm away from or diagonally opposite to the tumor site on the breast during surgical resection [14]. The tissue specimens were collected in separate containers (normal/tumor) with PBS containing antibiotics (Sigma-Aldrich), transported to the laboratory under sterile conditions, and were processed immediately within 1–2 h.
Fresh tumor and normal tissue samples obtained were processed separately as previously described [10, 14,15,16]. Briefly, primary tumor breast tissue samples were minced into small fragments of about 1–2 mm2, which were subsequently subjected to enzymatic digestion at 37 °C for 16–18 h using 1 mg/ml collagenase type IV and 100 U/ml hyaluronidase type IV-s (Sigma-Aldrich). Similarly, normal tissues, as confirmed by pathological examination, were initially minced into small pieces of 1–2 mm2 and then enzymatically digested as mentioned above. Following enzymatic digestion, breast organoids collected by differential centrifugation were further dissociated with trypsin-EDTA and dispase II (Sigma-Aldrich). The dissociated cells were separated by differential centrifugation and prepared for primary mammosphere cultures. Additionally, MCF-7 cell line obtained from NCCS, Pune, India, were initially seeded in a T25 flask containing Dulbecco’s Modified Eagle’s Medium (DMEM/F-12) with 10% FBS (Sigma-Aldrich) and incubated at 37 °C and 5% Co2 for further characterization.
Primary mammosphere culture
The sphere-forming abilities of breast normal and tumor cells derived from patient samples and MCF-7 cell line were evaluated by plating them under low-binding conditions in primary mammosphere culture. To this aim, the cells isolated from the normal tissues, primary tumor tissues, and MCF-7 cell line were separately seeded in triplicate at a density of 1 × 105 cells per well in ultra-low attachment 6-well plates (Corning) containing DMEM-F12 supplemented with 0.2% FBS, 20 ng/mL of human epidermal growth factor (hEGF) (Gibco), 5 ng/mL of insulin (Gibco), 4 ng/mL of heparin (Sigma-Aldrich), 1 μg/mL hydrocortisone (Sigma-Aldrich), and antibiotics. At the time of seeding, 2 mL of mammosphere media was added to each well and the plates were incubated at 37 °C and 5% Co2 without disturbing for 5 days, after which 0.5 mL of additional growth medium was added to each well. About a week later, non-adherent compact spheroids of about 50–100 μm in diameter called mammospheres were formed. Mammosphere-forming efficiency of the cells derived from the three sources was calculated by dividing the total number of spheres formed by the total number of viable cells seeded, which was expressed in percentage.
Mammosphere subculture
The mammospheres of breast normal tissues, primary tumors, and MCF-7 cell line formed in the primary cultures were collected by gentle centrifugation. After generating a single-cell suspension from the spheres, the cells were re-seeded as previously described. Briefly, the stem-like cell-enriched mammospheres collected from the primary mammosphere cultures were centrifuged at 800 rpm for 1 min. After disaggregating the spheroids using 0.25% trypsin-EDTA, the cells were then passed through 40 μm strainers to ensure that a single cell suspension was generated. For serial passaging, breast normal and tumor stem-like cells harvested were re-seeded in triplicate at a limited dilution of 1 × 104 cells per well in ultra-low attachment 6-well plates under non-adherent conditions as described above. Mammospheres of 50 to 100 μm in diameter were counted on days 7, 14, and 21 respectively. Sphere-forming efficiency was calculated at the end of each passage.
Mammosphere growth in different growth media
The growth of mammospheres was assessed in three different types of growth media, which was prepared with slightly different compositions—(A) DMEM with 10% FBS (serum-supplemented), (B) DMEM supplemented with 0.5 % FBS in addition to growth factors (low serum), and (C) DMEM containing mammary epithelial growth supplements (MEGS) (Gibco) such as pituitary extract, human recombinant insulin-like growth factor, hydrocortisone, and hEGF. Single cells from passage 2 were seeded in triplicate at a density of 1 × 104 cells per well in separate ultra-low attachment plates with 2.5 mL of the three different types of growth media added to each well. The fully grown mammospheres in each medium were subsequently counted and MFE was calculated.
Flow cytometry
Mammospheres from each passage of the breast normal tissues, primary tumors, and MCF-7 cell line were collected, washed, and stained according to the manufacturer’s protocol. After generating a single-cell suspension, the detached cells were re-suspended in ice-cold PBS with 0.5% FBS at a density of 1 × 106 cells/200 μL. While the stem-like cells obtained from primary tumors and MCF-7 cell line were stained against human CD44-FITC, CD24-PE, the mammosphere-enriched normal cells were incubated with anti-human CD49f-FITC, and anti-human EpCAM-PE (all from BD Biosciences) at 4 °C in the dark for 45 min at recommended concentrations, according to the manufacturer’s instructions. The labeled cells were then washed in PBS to remove any unbound antibodies, analyzed in FACS ARIA-2 (BD Biosciences, USA), and the data were visualized through DIVA software (BD Biosciences, USA). A minimum of 10,000 events was recorded for all samples and the experiments were performed in triplicate.
Immunohistochemistry
The expression of luminal and myoepithelial markers such as CK-18/CK-19 and α-SMA/EpCAM respectively were evaluated within primary tumor tissues by immunohistochemical staining procedure. Briefly, 4 μm tissue sections were obtained from formalin-fixed and paraffin-embedded blocks of breast tumor tissues. After retrieving the antigens by heat-induced epitope retrieval method, the sections were incubated in anti-CK-18, CK-19, α-SMA, and EpCAM monoclonal antibodies (Biogenex, India) at 4 °C overnight. This was followed by staining with a horseradish peroxidase-conjugated secondary antibody (Biogenex, India) at a dilution of 1:500 in PBS and incubated at room temperature for 1 h according to manufacturer’s instructions. The immunoreactivity was detected by adding diaminobenzidine (DAB) substrate (Biogenex, India). The sections were counterstained, dried, and mounted. Negative controls were stained with the secondary antibody only.
Statistical analysis
All the data obtained are presented as mean ± standard deviation (SD). Student’s t test, analysis of variance (ANOVA), and post hoc Tukey’s tests were performed using SPSS 22.0.0.0 (SPSS Inc., USA). A P value < 0.05 was considered as statistically significant to indicate the differences. All the experiments were performed at least three times in triplicate.