Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
Article
Google Scholar
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.
Article
Google Scholar
Jitariu A-A, Cîmpean AM, Ribatti D, Raica M. Triple negative breast cancer: the kiss of death. Oncotarget. 2017;8(28):46652–62. https://doi.org/10.18632/oncotarget.16938.
Article
PubMed
PubMed Central
Google Scholar
Yin L, Duan J-J, Bian X-W, Yu S-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. https://doi.org/10.1186/s13058-020-01296-5.
Article
PubMed
PubMed Central
Google Scholar
Kalpana G, Figy C, Yeung M, Yeung KC. Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling. Sci Rep. 2019;9(1):16351. https://doi.org/10.1038/s41598-019-52746-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Ren C-C, Yang L, Xu Y-M, Chen Y-N. Role of CXCL12-CXCR4 axis in ovarian cancer metastasis and CXCL12-CXCR4 blockade with AMD3100 suppresses tumor cell migration and invasion in vitro. J Cell Physiol. 2018;234(4):3897–909. https://doi.org/10.1002/jcp.27163.
Article
CAS
PubMed
Google Scholar
Pagella P, Nombela-Arrieta C, Mitsiadis TA. Distinct expression patterns of Cxcl12 in mesenchymal stem cell niches of intact and injured rodent teeth. Int J Mol Sci. 2021;22(6):3024. https://doi.org/10.3390/ijms22063024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhi Y, Lu H, Duan Y, Sun W, Guan G, Dong Q, et al. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α. Int J Mol Med. 2015;35(2):349–57. https://doi.org/10.3892/ijmm.2014.2032.
Article
CAS
PubMed
Google Scholar
Zuo K, Kuang D, Wang Y, Xia Y, Tong W, Wang X, et al. SCF/c-kit transactivates CXCR4-serine 339 phosphorylation through G protein-coupled receptor kinase 6 and regulates cardiac stem cell migration. Sci Rep. 2016;6(1):26812. https://doi.org/10.1038/srep26812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Riese DJ, Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 2020;11:1969. https://doi.org/10.3389/fphar.2020.574667.
Article
CAS
Google Scholar
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol. 2020;65:176–88. https://doi.org/10.1016/j.semcancer.2019.12.007.
Article
CAS
PubMed
Google Scholar
Huynh C, Dingemanse J, Zu Schwabedissen HEM, Sidharta PN. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol Res. 2020;161:105092. https://doi.org/10.1016/j.phrs.2020.105092.
Article
CAS
PubMed
Google Scholar
Papi A, Orlandi M. Role of nuclear receptors in breast cancer stem cells. World J Stem Cells. 2016;8(3):62–72. https://doi.org/10.4252/wjsc.v8.i3.62.
Article
PubMed
PubMed Central
Google Scholar
Ajayi AM, Adedapo AD, Badaki VB, Oyagbemi AA, Adedapo AA. Chrysophyllum albidum fruit ethanol extract ameliorates hyperglycaemia and elevated blood pressure in streptozotocin-induced diabetic rats through modulation of oxidative stress, NF-κB and PPAR-γ. Biomed Pharmacother. 2021;141:111879. https://doi.org/10.1016/j.biopha.2021.111879.
Article
CAS
PubMed
Google Scholar
Suryavanshi SV, Kulkarni YA. NF-κβ: a potential target in the management of vascular complications of diabetes. Front Pharmacol. 2017;8:798. https://doi.org/10.3389/fphar.2017.00798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puvvada SD, Funkhouser WK, Greene K, Deal A, Chu H, Baldwin AS, et al. NF-ĸB and Bcl-3 activation are prognostic in metastatic colorectal cancer. Oncology. 2010;78(3-4):181–8. https://doi.org/10.1159/000313697.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saralkar P, Geldenhuys WJ. Screening for anticancer properties of thiazolidinedione compounds in a galactose media metastatic breast cancer cell model. Med Chem Res. 2019;28(12):2165–70. https://doi.org/10.1007/s00044-019-02444-z.
Article
CAS
Google Scholar
Zhao D, Zhu Z, Li D, Xu R, Wang T, Liu K. Pioglitazone suppresses CXCR7 expression to inhibit human macrophage chemotaxis through peroxisome proliferator-activated receptor γ. Biochemistry. 2015;54(45):6806–14. https://doi.org/10.1021/acs.biochem.5b00847.
Article
CAS
PubMed
Google Scholar
Augimeri G, Gelsomino L, Plastina P, Giordano C, Barone I, Catalano S, et al. Natural and synthetic PPARγ ligands in tumor microenvironment: a new potential strategy against breast cancer. Int J Mol Sci. 2020;21(24):9721. https://doi.org/10.3390/ijms21249721.
Article
CAS
PubMed Central
Google Scholar
Yun S-H, Han S-H, Park J-I. Peroxisome proliferator-activated receptor γ and PGC-1α in cancer: dual actions as tumor promoter and suppressor. PPAR Res. 2018;2018:6727421. https://doi.org/10.1155/2018/6727421.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna MT, Weis JA, Barnes SL, Tyson DR, Miga MI, Quaranta V, et al. A predictive mathematical modeling approach for the study of doxorubicin treatment in triple negative breast cancer. Sci Rep. 2017;7(1):5725. https://doi.org/10.1038/s41598-017-05902-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma P, Barlow W, Godwin A, Pathak H, Isakova K, Williams D, et al. Impact of homologous recombination deficiency biomarkers on outcomes in patients with triple-negative breast cancer treated with adjuvant doxorubicin and cyclophosphamide (SWOG S9313). Ann Oncol. 2018;29(3):654–60. https://doi.org/10.1093/annonc/mdx821.
Article
CAS
PubMed
Google Scholar
Beji S, Milano G, Scopece A, Cicchillitti L, Cencioni C, Picozza M, et al. Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death Dis. 2017;8(8):e3020. https://doi.org/10.1038/cddis.2017.409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8. https://doi.org/10.1038/nprot.2008.73.
Article
CAS
PubMed
Google Scholar
Tormo E, Ballester S, Adam-Artigues A, Burgués O, Alonso E, Bermejo B, et al. The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci Report. 2019;9(1):5316. https://doi.org/10.1038/s41598-019-41472-y.
Article
CAS
Google Scholar
Zhang Y, Dosta P, Conde J, Oliva N, Wang M, Artzi N. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv Healthc Mater. 2020;9(4):e1901101. https://doi.org/10.1002/adhm.201901101.
Article
CAS
PubMed
Google Scholar
Mei L, Liu Y, Zhang Q, Gao H, Zhang Z, He Q. Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. J Control Release. 2014;196:324–31. https://doi.org/10.1016/j.jconrel.2014.10.017.
Article
CAS
PubMed
Google Scholar
Dragoj M, Milosevic Z, Bankovic J, Tanic N, Pesic M, Stankovic T. Targeting CXCR4 and FAK reverses doxorubicin resistance and suppresses invasion in non-small cell lung carcinoma. Cell Oncol (Dordr). 2017;40(1):47–62. https://doi.org/10.1007/s13402-016-0304-6.
Article
CAS
Google Scholar
Lee HH, Bellat V, Law B. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS One. 2017;12(2):e0171044. https://doi.org/10.1371/journal.pone.0171044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Augimeri G, Bonofiglio D. PPARgamma: a potential intrinsic and extrinsic molecular target for breast cancer therapy. Biomedicines. 2021;9(5):543. https://doi.org/10.3390/biomedicines9050543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi I, Kim YH, Kim JS, Seo JH. PPAR-γ ligand promotes the growth of APC-mutated HT-29 human colon cancer cells in vitro and in vivo. nves New. Drugs. 2008;26(3):283–8. https://doi.org/10.1007/s10637-007-9108-x.
Article
CAS
Google Scholar
Kim J-H, Park S-Y, Jun Y, Kim J-Y, Nam J-S. Roles of Wnt target genes in the journey of cancer stem cells. Int J Mol Sci. 2017;18(8):1604. https://doi.org/10.3390/ijms18081604.
Article
CAS
PubMed Central
Google Scholar
Schlosshauer PW, Brown SA, Eisinger K, Yan Q, Guglielminetti ER, Parsons R, et al. APC truncation and increased β-catenin levels in a human breast cancer cell line. Carcinogenesis. 2000;21(7):1453–6. https://doi.org/10.1093/carcin/21.7.1453.
Article
CAS
PubMed
Google Scholar
Palakurthi SS, Aktas H, Grubissich LM, Mortensen RM, Halperin JA. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor γ and mediated by inhibition of translation initiation. Cancer Res. 2001;61(16): p.6213-6218. DOI: Published; August 2001.
Google Scholar
Hernandez L, Magalhaes MA, Coniglio SJ, Condeelis JS, Segall JE. Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Res. 2011;13(6):1–7. https://doi.org/10.1186/bcr3074.
Article
CAS
Google Scholar
Finley LW. Metabolic signal curbs cancer-cell migration. Nature. 2019;571(7763):39–40. https://doi.org/10.1038/d41586-019-01934-9.
Article
CAS
PubMed
Google Scholar
Lan L, Han H, Zuo H, Chen Z, Du Y, Zhao W, et al. Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. Int J Cancer. 2010;126(1):53–64. https://doi.org/10.1002/ijc.24641.
Article
CAS
PubMed
Google Scholar
Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood. 2009;113(24):6085–93. https://doi.org/10.1182/blood-2008-12-196618.
Article
CAS
PubMed
Google Scholar