Guo Z, Ge M, Chu Y-H, Asioli S, Lloyd RV. Recent advances in the classification of low-grade papillary-like thyroid neoplasms and aggressive papillary thyroid carcinomas: evolution of diagnostic criteria. Adv Anat Pathol. 2018;25(4):263–72. https://doi.org/10.1097/PAP.0000000000000198.
Article
PubMed
Google Scholar
Rossi ED, Pantanowitz L, Hornick JL. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diab Endocrinol. 2021;9(4):193–4. https://doi.org/10.1016/S2213-8587(21)00049-8.
Article
Google Scholar
Thyroid cancer facts and figures. National Cancer Institute Surveillance, Epidemiology, and End Results Program 2021 [Available from: http://seer.cancer.gov/statfacts/html/thyro.html.
Song E, Jeon MJ, Oh H-S, Han M, Lee Y-M, Kim TY, et al. Do aggressive variants of papillary thyroid carcinoma have worse clinical outcome than classic papillary thyroid carcinoma? Eur J Endocrinol. 2018;179(3):135–42. https://doi.org/10.1530/EJE-17-0991.
Article
CAS
PubMed
Google Scholar
Agafonoff S, Allamaneni S, Bernstein J, Braverman T, Naqvi I, Chuchulo A. Hypervascular neck mass as the initial presentation of papillary thyroid cancer: a case report and review of current literature. Int J Surg Case Rep. 2020;66:196–200. https://doi.org/10.1016/j.ijscr.2019.12.010.
Article
PubMed
Google Scholar
Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, et al. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst. 2020;145:2038–57.
Cai H, Hou X, Ding Y, Fu Z, Wang L, Du Y. Prediction of gastric cancer prognosis in the next-generation sequencing era. Tradit Med Mod Med.2019;2(3):105–18.
Srivastava A, Creek DJ. Discovery and validation of clinical biomarkers of cancer: a review combining metabolomics and proteomics. Proteomics. 2019;19(10):1700448. https://doi.org/10.1002/pmic.201700448.
Article
CAS
Google Scholar
Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol. 2017;235(2):R43–r61. https://doi.org/10.1530/JOE-17-0266.
Article
CAS
PubMed
Google Scholar
Sharov AA, Schlessinger D, Ko MS. ExAtlas: an interactive online tool for meta-analysis of gene expression data. J Bioinforma Comput Biol. 2015;13(06):1550019. https://doi.org/10.1142/S0219720015500195.
Article
CAS
Google Scholar
Hong N, Zhang N, Wu H, Lu S, Yu Y, Hou L, et al. Preliminary exploration of survival analysis using the OHDSI common data model: a case study of intrahepatic cholangiocarcinoma. BMC Med Inform Decis Mak. 2018;18(5):81–8.
Google Scholar
Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010;1(4):274–8. https://doi.org/10.4103/0974-7788.76794.
Article
PubMed
PubMed Central
Google Scholar
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–W60. https://doi.org/10.1093/nar/gkz430.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20(9):1453–4. https://doi.org/10.1093/bioinformatics/bth078.
Article
CAS
PubMed
Google Scholar
Ito Y, Miyauchi A, Kihara M, Fukushima M, Higashiyama T, Miya A. Overall survival of papillary thyroid carcinoma patients: a single-institution long-term follow-up of 5897 patients. World J Surg. 2018;42(3):615–22. https://doi.org/10.1007/s00268-018-4479-z.
Article
PubMed
PubMed Central
Google Scholar
Franceschi S, Lessi F, Panebianco F, Tantillo E, La Ferla M, Menicagli M, et al. Loss of c-KIT expression in thyroid cancer cells. PLoS One. 2017;12(3):e0173913.
Robbins HL, Hague A. The PI3K/Akt pathway in tumors of endocrine tissues. Front Endocrinol. 2016;6:188.
Article
Google Scholar
Kim M-J, Kim SK, Park HJ, Chung DH, Park H-K, Lee JS, et al. PDGFRA promoter polymorphisms are associated with the risk of papillary thyroid cancer. Mol Med Rep. 2012;5(5):1267–70. https://doi.org/10.3892/mmr.2012.784.
Article
CAS
PubMed
Google Scholar
Zhang J, Wang P, Dykstra M, Gelebart P, Williams D, Ingham R, et al. Platelet-derived growth factor receptor-α promotes lymphatic metastases in papillary thyroid cancer. J Pathol. 2012;228(2):241–50. https://doi.org/10.1002/path.4069.
Article
CAS
PubMed
Google Scholar
Vella V, Malaguarnera R. The emerging role of insulin receptor isoforms in thyroid cancer: clinical implications and new perspectives. Int J Mol Sci. 2018;19(12):3814. https://doi.org/10.3390/ijms19123814.
Article
CAS
PubMed Central
Google Scholar
Qu T, Li YP, Li XH, Chen Y. Identification of potential biomarkers and drugs for papillary thyroid cancer based on gene expression profile analysis. Mol Med Rep. 2016;14(6):5041–8. https://doi.org/10.3892/mmr.2016.5855.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitsiades CS, Hayden P, Kotoula V, McMillin DW, McMullan C, Negri J, et al. Bcl-2 overexpression in thyroid carcinoma cells increases sensitivity to Bcl-2 homology 3 domain inhibition. J Clin Endocrinol Metab. 2007;92(12):4845–52. https://doi.org/10.1210/jc.2007-0942.
Article
CAS
PubMed
Google Scholar
Tan J, Qian X, Song B, An X, Cai T, Zuo Z, et al. Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep. 2018;40(1):111–22. https://doi.org/10.3892/or.2018.6428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin E, Koo JS. Expression of proteins related to autotaxin–lysophosphatidate signaling in thyroid tumors. J Transl Med. 2019;17(1):288. https://doi.org/10.1186/s12967-019-2028-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cong D, He M, Chen S, Liu X, Liu X, Sun H. Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: an analysis of The Cancer Genome Atlas. OncoTargets Ther. 2015;8:2271.
CAS
Google Scholar
Shang J, Ding Q, Yuan S, Liu J-X, Li F, Zhang H. Network analyses of integrated differentially expressed genes in papillary thyroid carcinoma to identify characteristic genes. Genes. 2019;10(1):45. https://doi.org/10.3390/genes10010045.
Article
CAS
PubMed Central
Google Scholar
Redler A, Di Rocco G, Giannotti D, Frezzotti F, Bernieri MG, Ceccarelli S, et al. Fibroblast growth factor receptor-2 expression in thyroid tumor progression: potential diagnostic application. PLoS One. 2013;8(8):e72224.
Kasaian K, Wiseman SM, Walker BA, Schein JE, Zhao Y, Hirst M, et al. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. BMC Cancer. 2015;15(1):984. https://doi.org/10.1186/s12885-015-1955-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jhunjhunwala S, Jiang Z, Stawiski EW, Gnad F, Liu J, Mayba O, et al. Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biol. 2014;15(8):436. https://doi.org/10.1186/s13059-014-0436-9.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Li F, Chen J. MYC promotes the development of papillary thyroid carcinoma by inhibiting the expression of lncRNA PAX8-AS1: 28. Oncol Rep. 2019;41(4):2511–7. https://doi.org/10.3892/or.2019.6996.
Article
CAS
PubMed
Google Scholar
Huang W, Gu J, Tao T, Zhang J, Wang H, Fan Y. MiR-24-3p inhibits the progression of pancreatic ductal adenocarcinoma through LAMB3 downregulation. Front Oncol. 2020;9:1499. https://doi.org/10.3389/fonc.2019.01499.
Han J, Chen M, Wang Y, Gong B, Zhuang T, Liang L, et al. Identification of biomarkers based on differentially expressed genes in papillary thyroid carcinoma. Sci Rep. 2018;8(1):1–11.
Google Scholar
Hosseinkhan N, Honardoost M, Blighe K, Moore C, Khamseh M. Comprehensive transcriptomic analysis of papillary thyroid cancer: potential biomarkers associated with tumor progression. J Endocrinol Investig. 2020;43(7):911–23.
Qiu J, Zhang W, Xia Q, Liu F, Zhao S, Zhang K, et al. Investigating the mechanisms of papillary thyroid carcinoma using transcriptome analysis. Mol Med Rep. 2017;16(5):5954–64. https://doi.org/10.3892/mmr.2017.7346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulten H-J, Alotibi R, Al-Ahmadi A, Ata M, Karim S, Huwait E, et al. Effect of BRAF mutational status on expression profiles in conventional papillary thyroid carcinomas. BMC Genomics. 2015;16(S1):S6. https://doi.org/10.1186/1471-2164-16-S1-S6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato S, Kobayashi T, Yamada K, Nishii K, Sawada H, Ishiguro H, et al. Expression of erbB receptors mRNA in thyroid tissues. Biochim Biophys Acta. 2004;1673(3):194–200.
Article
CAS
Google Scholar
Sun J, Shi R, Zhao S, Li X, Lu S, Bu H, et al. E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle. J Exp Clin Cancer Res. 2017;36(1):40. https://doi.org/10.1186/s13046-017-0504-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MK, Park SW, Kim SK, Park HJ, Eun YG, Kwon KH, et al. Association of Toll-like receptor 2 polymorphisms with papillary thyroid cancer and clinicopathologic features in a Korean population. J Korean Med Sci. 2012;27(11):1333–8. https://doi.org/10.3346/jkms.2012.27.11.1333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leone V, D’Angelo D, Rubio I, de Freitas PM, Federico A, Colamaio M, et al. MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1α. J Clin Endocrinol Metab. 2011;96(9):E1388–E98. https://doi.org/10.1210/jc.2011-0345.
Article
CAS
PubMed
Google Scholar
Zhu W, Li C, Ai Z. Candidate agents for papillary thyroid cancer identified by gene expression analysis. Pathol Oncol Res. 2013;19(3):597–604. https://doi.org/10.1007/s12253-013-9625-1.
Article
CAS
PubMed
Google Scholar
Yamashita AS, Geraldo MV, Fuziwara CS, Kulcsar MAV, Friguglietti CUM, da Costa RB, et al. Notch pathway is activated by MAPK signaling and influences papillary thyroid cancer proliferation. Transl Oncol. 2013;6(2):197. https://doi.org/10.1593/tlo.12442.
Article
PubMed
PubMed Central
Google Scholar
Lee K-Y, Huang SM, Li S, Kim J-M. Identification of differentially expressed genes in papillary thyroid cancers. Yonsei Med J. 2009;50(1):60–7. https://doi.org/10.3349/ymj.2009.50.1.60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang W, Sun F. Identification of key genes of papillary thyroid cancer using integrated bioinformatics analysis. J Endocrinol Investig. 2018;41(10):1237–45. https://doi.org/10.1007/s40618-018-0859-3.
Article
CAS
Google Scholar
Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120(5):1046–54. https://doi.org/10.1002/ijc.22394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv Y, Huang S. Role of non-coding RNA in pancreatic cancer. Oncol Lett. 2019;18(4):3963–73. https://doi.org/10.3892/ol.2019.10758.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boedigheimer MJ, Wolfinger RD, Bass MB, Bushel PR, Chou JW, Cooper M, et al. Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories. BMC Genomics. 2008;9(1):285. https://doi.org/10.1186/1471-2164-9-285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinohara M, Chung YJ, Saji M, Ringel MD. AKT in thyroid tumorigenesis and progression. Endocrinology. 2007;148(3):942–7. https://doi.org/10.1210/en.2006-0937.
Article
CAS
PubMed
Google Scholar
Xu Y, Han Y-F, Zhu S-J, Dong J-D, Ye B. miRNA-148a inhibits cell growth of papillary thyroid cancer through STAT3 and PI3K/AKT signaling pathways. Oncol Rep. 2017;38(5):3085–93. https://doi.org/10.3892/or.2017.5947.
Article
CAS
PubMed
Google Scholar