Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35.
Article
CAS
PubMed
Google Scholar
ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25:113–23.
Article
Google Scholar
Wang L, Xue GB. Catalpol suppresses osteosarcoma cell proliferation through blocking epithelial-mesenchymal transition (EMT) and inducing apoptosis. Biochem Biophys Res Commun. 2018;495:27–34.
Article
CAS
PubMed
Google Scholar
McCarthy IJ. The physiology of bone blood flow: A review. Bone Joint Surg Am. 2006;88:4–9.
Google Scholar
Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomed Nanotechnol Biol Med. 2011;7(4):385–402.
Article
CAS
Google Scholar
Xu S, Lu H, Zheng X. Stimuli-responsive molecularly imprinted polymers: versatile functional materials. J Mater Chem C. 2013;1(29):4406.
Article
CAS
Google Scholar
Peng H, Dong R, Wang S. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: fabrication, characterization and properties for controlled release of salidroside. Int J Pharm. 2013;446(1–2):153–9.
Article
CAS
PubMed
Google Scholar
Yu H-D, Zhang Z-Y, Win KY, Khin YW, Jerry C, Swee HT, et al. Bioinspired fabrication of 3D hierarchical porous nanomicrostructures of calcium carbonate for bone regeneration. Chem Commun (Camb). 2010;46(35):6578–80.
Article
CAS
Google Scholar
He F, Ren W, Tian X, Wei L, Shanghua W, Xiaoming C. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic. Mater Sci Eng C. 2016;64:117–23.
Article
CAS
Google Scholar
Orme MW, Labroo VM. Biopolymer-based delivery systems for advanced imaging and skeletal tissue-specific therapeutics. Bioorg Med Chem Lett. 1994;4:1375–80.
Article
CAS
Google Scholar
Griffin MO, Ceballos G, Villarreal FJ. Tetracycline compounds with non-antimicrobial organ protective properties: possible mechanisms of action. Pharmacol Res. 2011;63:102–7.
Article
CAS
PubMed
Google Scholar
Perrin DD. Binding of tetracyclines to bone. Nature (London). 1965;208:787–8.
Article
CAS
Google Scholar
Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment – where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–32.
Article
PubMed
Google Scholar
Seynhaeve ALB, Oostinga D, Haperen R, Eilken HM, Adams S, Adams RH. Spatiotemporal endothelial cell-pericyte association in tumors as shown by high resolution 4D intravital imaging. Sci Rep. 2018;8:9596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvasc Res. 1996;52:27–46.
Article
CAS
PubMed
Google Scholar
Barlow KD, Sanders AM, Soker S, Ergun S, Metheny-Barlow LJ. Pericytes on the tumor vasculature: jekyll or hyde? Cancer Microenviron. 2013;6:1–17.
Article
PubMed
Google Scholar
Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res. 2014;51:247–58.
Article
PubMed
PubMed Central
Google Scholar
Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156:1363–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: Implications for vascular collapse. Cancer Res. 2013;73:3833–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ottaviani G, Robert RS, Huh WW, Jaffe N. Functional, psychosocial and professional outcomes in long-term survivors of lower-extremity osteosarcomas: Amputation versus limb salvage. Cancer Treat Res. 2009;152:421–36.
Article
PubMed
Google Scholar
Janeway KA, Grier HE. Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol. 2010;11(7):670–8.
Article
PubMed
Google Scholar
Ferrari S, Smeland M, Mercuri F, Bertoni A, Longhi P, Ruggieri P, et al. Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: A joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol. 2005;23:8845–52.
Article
PubMed
Google Scholar
Schwartz CL, Gorlick R, Teot L, Krailo M, Chen Z, Goorin A, et al. Multiple drug resistance in osteogenic sarcoma: INT0133 from the Children’s Oncology Group. J Clin Oncol. 2007;25:2057–62.
Article
PubMed
Google Scholar
Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.
Article
PubMed
Google Scholar
Bonilla X, Dakir E, Mollinedo F, Gajate C. Endoplasmic reticulum targeting in Ewing's sarcoma by the alkylphospholipid analog Edelfosine. Oncotarget. 2015;6:14596–613.
Article
PubMed
PubMed Central
Google Scholar
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release. 2013;200:138–57. https://doi.org/10.1016/j.jconrel.2014.12.030.
Article
CAS
Google Scholar
Ma H, He C, Cheng Y, Yang Z, Zang J, Liu J, et al. Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS Appl Mater Interfaces. 2015;7:27040–8.
Article
CAS
PubMed
Google Scholar
Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res. 2019;15:1–18.
Article
CAS
PubMed
Google Scholar
Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013;19:e24281.
Article
Google Scholar
Chow EKH, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5(216):1–12.
Article
CAS
Google Scholar
Tong R, Kohane DS. New strategies in cancer nanomedicine. Annu Rev Pharmacol Toxicol. 2016;56(1):41–57. https://doi.org/10.1146/annurev-pharmtox-010715-103456.
Article
CAS
PubMed
Google Scholar
Shang-Yu W, Hong-Zhi H, Xiang-Cheng Q, Zhi-Cai Z, Zeng-Wu S. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J Cancer. 2020;11(1):69–82.
Article
CAS
Google Scholar
Suliman K, Muhammad WU, Rabeea S, Yang L, Ismat U, Mengzhou X, et al. Catechins-modified selenium-doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species. Front Oncol. 2019;13(9):499.
Google Scholar
Yagmur C, Ali DD, Selin G, Ezgi AG, Aysen T, Can O, et al. A new therapeutic combination for osteosarcoma: gemcitabine and clofazimine co-loaded liposomal formulation. Int J Pharm. 2019;25(557):97–104.
Google Scholar
Elena G, Ilaria B, Alessandro M, Barbara R, Konstantin C, Joanna K, et al. Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts. Cancer Lett. 2019;456:29–39.
Article
CAS
Google Scholar
Yanhai X, Tingwang J, Yinglan Y, Jiangmin Y, Mintao X, Ning X, et al. Dual targeting curcumin loaded alendronatehyaluronan-octadecanoic acid micelles for improving osteosarcoma therapy. Int J Nanomedicine. 2019;14:6425–37.
Article
Google Scholar
Suoyuan L, Tao Z, Weiguo X, Jianxun D, Fei Y, Jing X, et al. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics. 2018;8(5):1361–75.
Article
CAS
Google Scholar
Guanyi W, Wantong S, Na S, Haiyang Y, Mingxiao D, Zhaohui T, et al. Curcumin-ecapsulated polymeric nanoparticles for metastatic osteosarcoma cells treatment. Sci China Mater. 2017;60(10):995–1007.
Article
CAS
Google Scholar
Fateme H, Ghasem A, Samira N, Kamran N, Behrouz ZD, Tymour F, Marco NH, et al. EphA2 targeted doxorubicin-nanoliposomes for osteosarcoma treatment. Pharm Res. 2017;34(12):2891–900.
Article
CAS
Google Scholar
Ya L, Rui L, Xue L, Zhen S, Xue Z. Development of docetaxel and alendronate-loaded chitosan-conjugated polylactide-co-glycolide nanoparticles: In vitro characterization in osteosarcoma cells. Trop J Pharm Res. 2016;15(7):1353.
Article
CAS
Google Scholar
Yu W, Lei L, Naimin S, Zhiqi H, Hui C, Leqin X, et al. Triazine-modified dendrimer for efficient TRAIL gene therapy in osteosarcoma. Acta Biomater. 2015;17:115–24.
Article
CAS
Google Scholar
Qian C, Chen Y, Zhu S, Yu J, Zhang L, Feng P, et al. ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics. 2016;6:1053–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu X, Tian J, Liu T, Zhang G, Liu S. Photo-triggered release of caged camptothecin prodrugs from dually responsive shell cross-linked micelles. Macromolecules. 2013;46:6243–56.
Article
CAS
Google Scholar
Kundu JK, Surh YJ. Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm Res. 2010;27:999–1013.
Article
CAS
PubMed
Google Scholar
Basel MT, Shrestha TB, Troyer DL, Bossmann SH. Protease-sensitive, polymer-caged liposomes: a method for making highly targeted liposomes using triggered release. ACS Nano. 2011;5:2162–75.
Article
CAS
PubMed
Google Scholar
Radhakrishnan K, Tripathy J, Gnanadhas DP, Chakravortty D, Raichur AM. Dual enzyme responsive and targeted nanocapsules for intracellular delivery of anticancer agents. RSC Adv. 2014;4:45961–8.
Article
CAS
Google Scholar
Yongs HL, Hao H, Peng Z, Zhiyu Z. Co-delivery of doxorubicin and paclitaxel by reduction/pH dual responsive nanocarriers for osteosarcoma therapy. Drug Deliv. 2020;27(1):1044–53.
Article
CAS
Google Scholar
Hongli S, Ke L, Duoyi Z, Changliang C, Qinyuan T, Xiaoqing W, et al. Locally controlled release of methotrexate and alendronate by thermo-sensitive hydrogels for synergistic inhibition of osteosarcoma progression. Front Pharmacol. 2020;11:573.
Article
CAS
Google Scholar
Christos T, Matteo B, Mirko P, Gabriele LR, Alice S, Gianni C. CeO2 Nanoparticles-loaded pH-responsive microparticles with antitumoral properties as therapeutic modulators for osteosarcoma. ACS Omega. 2018;3:8952–62.
Article
CAS
Google Scholar
Xuelei Y, Shuaishuai F, Yingying C, Jinhu L, Kaoxiang S, Chuanyou G, et al. Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma. Drug Deliv. 2017;25(1):900–8.
Google Scholar
Ma H, He C, Cheng Y, Li D, Gong Y, Liu J, et al. PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEGPLGA hydrogels for osteosarcoma treatment. Biomaterials. 2014;35:8723–34.
Article
CAS
PubMed
Google Scholar
Ting TG, Chengjun L, Yurui X, Lei Z, Xue S, Xinyu H, et al. Stimuli-responsive combination therapy of cisplatin and Nrf2 siRNA for improving antitumor treatment of osteosarcoma. Nano Res. 2020;13:630–7.
Article
CAS
Google Scholar
Ignjatovi N, Wu V, Ajdukovi Z, Mihajilov-Krstev T, Uskokovi V, Uskokovi D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Korean J Couns Psychother. 2016;60:357–64.
Google Scholar
Victoria MW, Jarrett M, Vuk U. Bisphosphonate-functionalized hydroxyapatite nanoparticles for the delivery of the bromodomain inhibitor JQ1 in the treatment of osteosarcoma. ACS Appl Mater Interfaces. 2017;9(31):25887–904.
Article
CAS
Google Scholar
Gilboa E, Berezhnoy A, Schrand B. Reducing toxicity of immune therapy using aptamer targeted drug delivery. Cancer Immunol Res. 2015;3:1195–200.
Article
CAS
PubMed
Google Scholar
Hua W, Ji L, Yan M, Bo S, Xianqian L, Yan W, et al. Identification of a novel molecular probe for recognition of human osteosarcoma cell using the cell-SELEX method. Int J Clin Exp Med. 2015;8(10):18151–7.
Google Scholar
Paige M, Kosturko G, Bulut G, Miessau M, Rahim S, Toretsky JA, et al. Design, synthesis and biological evaluation of ezrin inhibitors targeting metastatic osteosarcoma. Bioorg Med Chem. 2014;22:478–87.
Article
CAS
PubMed
Google Scholar
Dubois SG, Shusterman S, Ingle AM, Ahern CH, Reid JM, Wu B, et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a children's oncology group study. Clin Cancer Res. 2011;17(15):5113–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng W, Yue Y, Fan W, Hu Y, Wang X, Pan X, et al. Effects of tetracyclines on bones: An ambiguous question needs to be clarified. Pharmazie. 2012;67:457–9.
CAS
PubMed
Google Scholar
Choi SW, Kim JH. Design of surface-modified poly (D, L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release. 2007;122:24–30.
Article
CAS
PubMed
Google Scholar
Low SA, Yang J, Kopecek J. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics. Bioconjug Chem. 2014;25:2012–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salerno M, Cenni E, Fotia C, Avnet S, Granchi D, Castelli F, et al. Bone-targeted doxorubicin-loaded nanoparticles as a tool for the treatment of skeletal metastases. Curr Cancer Drug Targets. 2010;10:649–59.
Article
CAS
PubMed
Google Scholar
Gui K, Zhang X, Chen F, Ge Z, Zhang S, Qi X, et al. Lipid-polymer nanoparticles with CD133 aptamers for targeted delivery of all-trans retinoic acid to osteosarcoma initiating cells. Biomed Pharmacother. 2019;111:751–64.
Article
CAS
PubMed
Google Scholar
Chi Y, Yin X, Sun K, Feng S, Liu J, Chen D, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release. 2017;261:113–25.
Article
CAS
PubMed
Google Scholar
Fang Z, Sun Y, Xiao H, Li P, Liu M, Ding F, et al. Targeted osteosarcoma chemotherapy using RGD peptide-installed doxorubicin-loaded biodegradable polymeric micelle. Biomed Pharmacother. 2017;85:160–8.
Article
CAS
PubMed
Google Scholar
Liang C, Li F, Wang L, Zhang ZK, Wang C, He B, et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials. 2017;147:68–85.
Article
CAS
PubMed
Google Scholar
Rudnick-Glick S, Corem-Salkmon E, Grinberg I, Margel S. Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol)bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model. J Nanobiotechnology. 2016;14:80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q, et al. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int J Nanomedicine. 2015;10:2537–54.
CAS
PubMed
PubMed Central
Google Scholar
Morton SW, Shah NJ, Quadir MA, Deng ZJ, Poon Z, Hammond PT. Osteotropic therapy via targeted layer-by-layer nanoparticles. Adv Healthc Mater. 2014;3:867–75.
Article
CAS
PubMed
Google Scholar
Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today. 2018;23(5):974–91.
Article
PubMed
Google Scholar
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release. 2018;269:88–99.
Article
CAS
PubMed
Google Scholar
Daniele M, Massimo B, Alberto B, Andrea B, Letizia P. Immunoconjugates for osteosarcoma therapy: preclinical experiences and future perspectives. Biomedicines. 2018;6(1):19.
Article
CAS
Google Scholar
Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol. 2014;11:637–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zahaf NI, Schmidt G. Bacterial toxins for cancer therapy. Toxins (Basel). 2017;9:E236.
Article
CAS
Google Scholar
Polito L, Djemil A, Bortolotti M. Plant Toxin-based immunotoxins for cancer therapy: A short overview. Biomedicines. 2016;4:E12.
Article
PubMed
CAS
Google Scholar
Polakis P. Antibody drug conjugates for cancer therapy. Pharmacol Rev. 2016;68:3–19.
Article
CAS
PubMed
Google Scholar
Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.
Article
CAS
PubMed
Google Scholar
Shapira A, Benhar I. Toxin-based therapeutic approaches. Toxins (Basel). 2010;2:2519–83.
Article
CAS
Google Scholar
Michael R, David MB, Sajida P, Vicky K, Stephanie E, David G, et al. Targeting glycoprotein NMB with antibody-drug conjugate, glembatumumab vedotin, for the treatment of osteosarcoma. Pediatr Blood Cancer. 2016;63(1):32–8.
Article
CAS
Google Scholar
Anderson PM, Meyers DE, Hasz DE, Covalcuic K, Saltzman D, Khanna C, et al. In vitro and in vivo cytotoxicity of an anti-osteosarcoma immunotoxin containing pokeweed antiviral protein. Cancer Res. 1995;55(6):1321–7.
CAS
PubMed
Google Scholar
Federman N, Chan J, Nagy JO, Landaw EM, McCabe K, Wu AM, et al. Enhanced growth inhibition of osteosarcoma by cytotoxic polymerized liposomal nanoparticles targeting the ALCAM cell surface receptor. Sarcoma. 2012;2012:126906.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reid IR, Hosking DJ. Bisphosphonates in Paget’s disease. Bone. 2011;49:89–94.
Article
CAS
PubMed
Google Scholar
Clézardin P, Benzaïd I, Croucher PI. Bisphosphonates in preclinical bone oncology. Bone. 2011;49:66–70.
Article
PubMed
CAS
Google Scholar
Miller PD. The kidney and bisphosphonates. Bone. 2011;49:77–81.
Article
CAS
PubMed
Google Scholar
Eastell R, Walsh JS, Watts NB, Siris E. Bisphosphonates for postmenopausal osteoporosis. Bone. 2011;49:82–8.
Article
CAS
PubMed
Google Scholar
Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19:733–59.
Article
CAS
PubMed
Google Scholar
Papapoulos SE. Bisphosphonates: how do they work? Best Pract Res Clin Endocrinol Metab. 2008;22:831–47.
Article
CAS
PubMed
Google Scholar
Fleisch H, Reszka A, Rodan GA, Rogers M. Principles of bone biology, vol. 10. San Diego: Academic Press; 2002. p. 1361–85.
Google Scholar
Fancis MD, Fogelman I. Bone scanning in clinical practice, vol. 4. New York: Springer-Verlag; 1987. p. 7–17.
Book
Google Scholar
Bansal G, Gittens SA, Uludag H. A di(bisphosphonic acid) for protein coupling and targeting to bone. J Pharm Sci. 2004;93(11):2788–99.
Article
CAS
PubMed
Google Scholar
Gittens SA, Bansal G, Zernicke RF, Uludağ H. Designing proteins for bone targeting. Adv Drug Deliv Rev. 2005;57(7):1011–36.
Article
CAS
PubMed
Google Scholar
Herczegh P, Buxton TB, McPherson JC, Kovács-Kulyassa A, Brewer PD, Sztaricskai F, et al. Osteoadsorptive bisphosphonate derivatives of fluoroquinolone antibacterials. J Med Chem. 2002;45(11):2338–41.
Article
CAS
PubMed
Google Scholar
El-Mabhouh AA, Christo AA, Ron C, John RM. A 99mTc-labeled gemcitabine bisphosphonate drug conjugate as a probe to assess the potential for targeted chemotherapy of metastatic bone cancer. Nucl Med Biol. 2006;33(6):715–22.
Article
CAS
PubMed
Google Scholar
Reinholz MM, Shawn PZ, Amylou CD, David D, Gregory GR, Leslie AJ, et al. A promising approach for treatment of tumor-induced bone diseases: utilizing bisphosphonate derivatives of nucleoside antimetabolites. Bone. 2010;47(1):12–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katrin H, Khalid AA, Cynthia S, Felix K. Development of novel bisphosphonate prodrugs of doxorubicin for targeting bone metastases that are cleaved pH dependently or by cathepsin B: synthesis, cleavage properties, and binding properties to hydroxyapatite as well as bone matrix. J Med Chem. 2012;55:7502–15.
Article
CAS
Google Scholar
Pan HZ, Sima M, Kopečková P, Wu K, Gao SQ, Liu J, et al. Biodistribution and pharmacokinetic studies of bone-targeting N-(2-hydroxypropyl) methacrylamide copolymer-alendronate conjugates. Mol Pharm. 2008;5:48–558.
Article
CAS
Google Scholar
Seymour LW, Duncan R, Strohalm J, Kopeček J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res. 1987;21:1341–58.
Article
CAS
PubMed
Google Scholar
Ehud S, Huaizhong P, Paula O, Taturo U, Pavla K, Jindrich K, Ronit SF. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One. 2009;4(4):e5233.
Article
CAS
Google Scholar
Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines. Biochem Soc Trans. 2007;35:56–60.
Article
CAS
PubMed
Google Scholar
Říhová B, Kopečková P, Strohalm J, Rossmann P, Vétvička V, Kopeček J. Antibody directed affinity therapy applied to the immune system: In vivo effectiveness and limited toxicity of daunomycin conjugated to HPMA copolymers and targeting antibody. Clin Immunol Immunopathol. 1988;46:100–14.
Article
PubMed
Google Scholar
Omelyanenko V, Gentry C, Kopečková P, Kopeček J. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int J Cancer. 1998;75:600–8.
Article
CAS
PubMed
Google Scholar
Hochstein FA, Stephens CR, Conover LH, Regna PP, Pasternack R, Gordon PN, et al. The structure of terramycin. J Am Chem Soc. 1953;75:5455–75.
Article
CAS
Google Scholar
Albert A, Rees CW. Avidity of the tetracyclines for the cations of metals. Nature. 1956;177:433–4.
Article
CAS
PubMed
Google Scholar
Reichert JC, Cipitria A, Epari DR, Saifzadeh S, Krishnakanth P, Berner A, et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med. 2012;4:141–93.
Article
CAS
Google Scholar
Wang H, Liu J, Tao S, Chai GH, Wang JW, Hu FQ, et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomedicine. 2015;10:5671.
CAS
PubMed
PubMed Central
Google Scholar
Ganjavi H, Gee M, Narendran A, Parkinson N, Krishnamoorthy M, Freedman MH, et al. Adenovirus-mediated p53 gene therapy in osteosarcoma cell lines: sensitization to cisplatin and doxorubicin. Cancer Gene Ther. 2006;13(4):415–9.
Article
CAS
PubMed
Google Scholar
Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: A comprehensive review. AAPS J. 2005;7:E61–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu HH, Huang CH, Shiue TY, Wang FS, Chang KK, Chen Y, et al. Erratum: highly efficient gene release in spatiotemporal precision approached by light and pH dual responsive copolymers. Chem Sci. 2019;10(1):284–92. https://doi.org/10.1039/C8SC01494A.
Article
CAS
PubMed
Google Scholar
Mariana M, Mauro A, Elisiário T, Fernanda MF, Carla V, Joana J, et al. miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. Eur J Pharm Sci. 2018;123:28–42.
Article
CAS
Google Scholar
Savvidou OD, Bolia IK, Chloros GD, Goumenos SD, Sakellariou VI, Galanis EC, et al. Applied nanotechnology and nanoscience in orthopedic oncology. Orthopedics. 2016;39(5):280–6. https://doi.org/10.3928/01477447-20160823-03.
Article
PubMed
Google Scholar
Witlox MA, Lamfers ML, Wuisman PI, Curiel DT, Siegal GP. Evolving gene therapy approaches for osteosarcoma using viral vectors: Review. Bone. 2007;40(4):797–812.
Article
CAS
PubMed
Google Scholar
Dinja O, Adhiambo W, Victor WB, Hidde JH, Gerard RS, Johannes B, et al. Gene-directed enzyme prodrug therapy for osteosarcoma: sensitization to CPT-11 in vitro and in vivo by adenoviral delivery of a gene encoding secreted carboxylesterase-2. Mol Cancer Ther. 2003;2(8):765–71.
Google Scholar
Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed N, Salsman VS, Yvon E. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 2009;17(10):1779–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorlick R, Huvos AG, Heller G, Aledo A, Beardsley GP, Healey JH, et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol. 1999;17(9):2781–8.
Article
CAS
PubMed
Google Scholar
Huang G, Yu L, Cooper LJ, Hollomon M, Huls H, Kleinerman ES. Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 2012;72(1):271–81.
Article
CAS
PubMed
Google Scholar
Jacobs JF, Brasseur F, Hulsbergen-van de Kaa CA, Carl GF, Gosse JA, Peter MH, et al. Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR. Int J Cancer. 2007;120(1):67–74.
Article
CAS
PubMed
Google Scholar
Yu AL, Uttenreuther-Fischer MM, Huang CS. Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J Clin Oncol. 1998;16(6):2169–80.
Article
CAS
PubMed
Google Scholar
Ishikura H, Ikeda H, Abe H. Identification of CLUAP1 as a human osteosarcoma tumor-associated antigen recognized by the humoral immune system. Int J Oncol. 2007;30(2):461–7.
CAS
PubMed
Google Scholar
Tsukahara T, Kawaguchi S, Torigoe T. Prognostic impact and immunogenicity of a novel osteosarcoma antigen, papillomavirus binding factor, in patients with osteosarcoma. Cancer Sci. 2008;99(2):368–75.
Article
CAS
PubMed
Google Scholar
Yuan D, Liu B, Liu K. Overexpression of fibroblast activation protein and its clinical implications in patients with osteosarcoma. J Surg Oncol. 2013;108(3):157–62.
Article
CAS
PubMed
Google Scholar
Rouleau C, Curiel M, Weber W, Robert S, Leslie K, James M, et al. Endosialin protein expression and therapeutic target potential in human solid tumors: sarcoma versus carcinoma. Clin Cancer Res. 2008;14(22):7223–36.
Article
CAS
PubMed
Google Scholar
Modak S, Kramer K, Gultekin SH. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res. 2001;61(10):4048–54.
CAS
PubMed
Google Scholar
Wang Y, Yu W, Zhu J, Wang J, Xia K, Liang C, et al. Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res. 2019;38(1):168.
Article
PubMed
PubMed Central
Google Scholar
Maria VG, Steven CG, Parker G. Animal models in osteosarcoma. Front Oncol. 2014;4:1–7.
Google Scholar
Manara MC, Baldini N, Serra M. Reversal of malignant phenotype in human osteosarcoma cells transduced with the alkaline phosphatase gene. Bone. 2000;26(3):215–20.
Article
CAS
PubMed
Google Scholar
Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2005;26(3):513–23.
Article
CAS
PubMed
Google Scholar
Roman M, Prisni R, Ram M, Ram K, Knut H, Walter B, et al. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes. PLoS One. 2015:10(5):e0125611.
Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64–83.
Article
CAS
PubMed
Google Scholar